
Building and Simulating an 8-bit SAR ADC in LTSpice 

 

One of our biggest priorities in this digital environment is to interact quickly and easily with our 

inherited natural world. This challenge was met with a multitude of Analog to Digital Converters (ADCs) 

and Digital to Analog Converters (DACs). The Successive Approximation Registers Analog to Digital 

Converter (SAR ADC) is one of the more popular ADCs because of its high speed and resolution as well as 

its simple and small design [1]. The SAR ADC uses the binary search algorithm to convert an analog input 

into an N-bit digital output signal. A SAR ADC has four major components: the sample/hold circuit, the 

comparator, the SAR logic circuit, and the digital to analog converter. The SAR ADC’s smaller 

components include a timing circuit that creates all the clock signals needed for the entire circuit as well 

as an output circuit that samples and outputs the final converted digital signal. The SAR ADC in this 

project uses 50nm technology and a 1V rail-to-rail voltage. 

 

Other information that will be added to the introduction: 

o Power input 

o Specs from the testing 

 

Tutorial Introduction: 

The method in this paper will make use of sub-cell circuits; each circuit component will be built then 

tested separately. Once the circuit simulations are successful, a symbol is made for the circuit block then 

is tested once again. After each symbol is developed and combined with the next level circuit, the final 

SAR ADC will be made of only six circuit blocks. This hierarchy makes building and debugging much 

simpler for large scale circuits. 

To start, these first circuits will need to be created: 

1. An inverter 

2. 3-input NAND logic gate 

3. 2-input AND logic gate 

Then, our next components to make are: 

1. Inverter Buffer 

2. Texas Instruments D Flip-Flop (TI DFF) 

3. Comparator Biasing circuit 

Finally, the last components we will build are: 

1. SAR logic block 

2. R2R DAC 

3. Sample/Hold circuit 

4. Comparator circuit 

5. Output Door 

6. Clocks Circuit 

 

Once all components are finished and successfully simulated the SAR ADC will be finished with these last 

six components. Before starting the tutorial, the following model document needs to be downloaded 

and placed in the same folder that the components will be housed. models.txt 

 

Tutorial Instructions: 



Part 1. 

The first step will be to create the inverters and logic gates. The LTSpice component models used for the 

PMOS is “pmos4” and the NMOS is “nmos4”. Each PMOS and NMOS used in this circuit will have the 

same specifications to coordinate with the models.txt file. All PMOS transistors need to be named 

“P_50n” and edited to have a length of “50n” and a width of “1u”. All NMOS transistors need to be 

named “N_50n” and have a length of “50n” and a width of “0.5u”. These settings can be accessed by 

right clicking each component symbol. The finished inverter circuit can be seen in the following figures. 

 

 

 

 

Figure 1.1 (left). Inverter logic gate comprised of one 

PMOS transistor on top and one NMOS transistor on the 

bottom. Note, PMOS and NMOS are connected drain to 

drain. 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Successful simulation of the inverter circuit. Vout is the opposite of Vin. 



 

Figure 1.3. Successful inverter symbol simulation. 

 

Now that the inverter is fully functional, the NAND and AND gates can be created using the same steps. 

 

 
Figure 2.1. AND logic gate circuit simulation. The simulation lets us see all possible inputs. Vout will only 

go to 1 when both the inputs are 1. 

 



 
Figure 2.2. AND symbol simulation results. 

 

 
Figure 3.1. Three input NAND logic gate circuit simulation. Using the same counting method, all possible 

inputs can be seen from 0-0-0 to 1-1-1. 

 



 
Figure 3.2. Three input NAND symbol simulation. 

 

Part 2. 

Now that the lower-level circuits have been built and successfully simulated, the next level circuits can 

be created. At this point we will build the inverter buffers, TI DFF, and the Comparator biasing circuit. 

These mid-level circuits will be the final building blocks for our SAR ADC’s six circuit components. 

 

 
Figure 4.1. The buffer is used to prevent hold time violations in the circuit. The input and output are the 

same values. 

 



 
Figure 4.2. The buffer symbol simulation. The symbol is marked with the word “buffer” so as not to get it 

confused with the inverter or comparator. The “vhigh” and “vlow” outputs are also marked in case the 

buffer is rotated or mirrored with future use. 

 

 
Figure 5.1. TI DFF circuit simulation. The data signal is delayed slightly so that the data signal is distinct 

from the rising edge clock signal. The reset function can be seen in the first 4us. Normal Flip Flop 

functions can be seen from 4us to 12us. The set function can be seen in the last 6us. 

 



Figure 5.2. Successful TI DFF symbol simulation. The Q not output is also seen here. 

 

The comparator biasing circuit was provided by Dr. Li who had retrieved it from Dr. Jacob Baker’s book 

[1]. This circuit can be found in figure 20.22 on page 629. In the following figure, the operating point 

simulation is provided for a full view of the circuit. 



 
Figure 6.1. Comparator Biasing Circuit with operating point (“.op”) simulation results. 

 

Part 3. 

For this part of the project, we will be creating the last circuit blocks needed for the final SAR ADC. In 

this section we will build the SAR Logic block, the R2R DAC, the Sample/Hold circuit, the Comparator 

circuit, the output door circuit, and the clocks circuit. 

The SAR Logic schematic is from an outside source [3]. The Logic was used in a SAR ADC microchip, so it 

has buffers to prevent a real-world issue called hold time violation. These hold violations will interfere 

with a microchip’s timing and will cause this ADC process to become defective. 

 



 
Figure 7.1. SAR Logic circuit block color coded for easier referencing. All “VHIGH” is red, “VLOW” is black, 

“reset” is yellow, “clk” is green and “Comp” is purple/pink. Keep in mind, the TI DFFs have the “set_not” 

and “reset_not” outputs so this may look different than a traditional SAR Logic circuit. 

 

 
Figure 7.2. SAR Logic Circuit simulation. Because the circuit is so large this figure only contains the input 

voltages of the circuit. The inputs are meant to correlate to the labels in figure 7.1. The results to look 

for with this simulation can be seen in the colored vertical lines. The output sampling is triggered by the 

following TI DFF’s Q rising edge (as seen in the blue lines of figure 7.1). So, each signal is set at the 

moment the following TI DFF gets its initial high value. 

 



 
Figure 7.3. SAR Logic symbol simulation. The input signals are the same as those in figure 7.2. 

 

 
Figure 8.1. R2R DAC circuit simulation with correct voltage output. The orange box shows the binary to 

decimal conversion and the calculation for the analog value. Vref here is V1=1V. 

 



 
Figure 8.2. R2R ladder symbol simulation and verification calculations. 

 

The following Sample/Hold circuit was taken from [2]. 

 
Figure 9.1. Abo’s Sample and Hold Circuit. 



 
Figure 9.2. Sample/Hold circuit simulation. The input values are the signals that will be used for the SAR 

ADC. The “Sample_in” signal will be the SAR ADC’s Vin signal. 

 

 
Figure 9.3. Sample/Hold simulation with the symbol. 

 



 
Figure 10.1. Comparator schematic. This comparator is also from Dr. Baker’s CMOS book [1]. This circuit 

can be found on page 820 in figure 24.61. 

 

 
Figure 10.2. Comparator circuit simulation with just the voltage input signals shown. When vp<vm then 

vout=0, and when vp>vm, vout=1. 

 



 
Figure 10.3. Comparator symbol simulation check. 

 

 
Figure 11.1. Parallel in parallel out shift register Output Door circuit schematic. This circuit is used to 

sample the output right after the conversion cycle is complete and right before the SAR Logic is reset for 

the next cycle. 

 

 
Figure 11.2. Circuit simulation for the output door. I added the inverter just to get some variety in the 

outputs. As you can see, the input can vary and is only sent to the output when the clock signal has a 

rising edge. 

 



 
Figure 11.3. Output door symbol simulation results. The outputs were doubled up for a better view. 

 

The last component that we need to make is the clocks circuit. This circuit will take an input of 4MHz 

and output all the clock signals we need for the SAR ADC circuit. These signals include the 2MHz 50% 

duty cycle clock signal for the SAR Logic block, the 200kHz 10% duty cycle Sample/Hold clock signal, the 

200kHz 10% duty cycle inverted SAR Logic Reset signal, and the 200kHz 10% duty cycle Output Door 

clock signal. The Sample/Hold signal is an inversion of the Reset signal. 

The circuit uses a 4-bit counter and is reset when the counter reaches the number ten which, in binary, 

is the value “1010”. This permits 10 SAR Logic periods (0-9) for the conversion process. The first period is 

when the Sample/Hold and Reset signals are active and is used to set the initial “1000 0000” values for 

the SAR Logic block. The next nine cycles are used by the SAR Logic block to determine the binary value. 

The Output Door will then sample and output the digital values. The clocks circuit contains two main 

parts, the counter circuit and the logic gates used to detect specific binary values. 

 



 
Figure 12.1. Counter portion of the clocks circuit. The output of each counter divides the input 

frequency signal by 2. In this figure, each output is labeled with its new frequency. 

 

 



Figure 12.2. Logic gate portion of the clocks circuit. The Q labels show the output that each logic setup is 

seeking out from the counter. The bottom circuit’s input references the TI DFF output nodes before the 

inverter, to keep the circuit simple. Otherwise there would be much more inverters than needed. 

 

 
Figure 12.3. Clocks circuit simulation. The “clk_in” signal is 4MHz, which is “PULSE(0 1 0 1p 1p 125n 

250n)” in LTSpice. The very first cycle is a half period, so the first rising edge is period 1. The “clk_2mhz” 

will go through 10 periods before resetting. You can see that “clk_door” is 1 for the last period and 

“clk_sh” is 1 in the first period. 

 

 
Figure 12.4. Clocks symbol simulation. 

 

Part 4. 

Now that all the components have been built and tested, we can assemble the final SAR ADC circuit. For 

a more comprehensive simulation result, a DAC will be connected to the output bits as seen in Figure 

13.1. 

 



 

 

Figure 13.1. (left) 

The SAR ADC circuit 

schematic with a 

second R2R DAC 

connected to S7_out 

through S0_out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 13.2. SAR ADC simulation results. In the top graph is Vin and Vout from the secondary DAC at the 

very bottom of the Figure 13.1. The middle graph shows the SAR Logic converting to the Sample/Hold 

output value. The lower graph is the comparator directing the SAR Logic as seen through DAC_vout. 

 

This project is an LTSpice adaptation from [3]’s project. Major differences include a different comparator 

(from [1]), a simpler set/reset function, a different timing logic block, an R2R DAC, the Output Door 

circuit, and a slightly different SAR Logic circuit. 
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