s0, the XADC module should also be used in connection with the joystick.

13.11 Translator

We can design a digital system to translate voice commands from English to Spanish
(or another language) and show them on a 16 x2 LCD. The system will have two parts.
The first part will recognize the spelled out English word. We can use the EasyVR
shield for this purpose [60]. This module has predefined speaker-independent word
sets. Also, you can create your own speaker-dependent word set. In the second part of
the translator system, we will get the recognition result and form a state machine in the
FPGA to provide the translated word corresponding to the recognized one. Then, this
word is shown on the LCD.

The LCD we have used in our system is WH1602N with a built-in controller
ST7066 or equivalent. To use the LCD display, we need a Verilog description. We
provide such an LCD driver module in Listing 13.16. This module has four inputs:
clk, reset, wr_en, and data_in. The main clock signal, c1k, is expected to be 100
MHz. Active-high reset signal resets the operation and the module waits for an
active-high write enable wr en signal. data in is eight-bit data that will be transmitted
to the display. The module has three outputs: data out (eight-bit data output), en
(enable signal to drive the LCD), and rs (data/instruction selection signal for LCD).

Listing 13.16 Verilog Description of LCD Driver Module



module LCD driver (clk,reset,wr en,data in,data out,en,rs);

input clk;

input reset;

input wr_en;

input [7:0] data in;
output reg [7:0] data out;
output reg en;

output reg rs;

parameter clk param = 100000;

localparam INIT=2'b00,WAIT=2'b01l,WRITE=2'b10;
reg [2:0] state = INIT;

localparam init index=3;
localparam char index=15;
reg [3:0] init_count=0;
integer limit count=0;
reg [7:0] init [3:0];

reg [3:0] clear=0;

initial begin

init[0]=8'h30; // 1 Line, 5x8 Dots

init[1]=8'h01; // Clear display

init [2]=8'h06; // Increment cursor (Shift cursor to right)
init[3]1=8'h0F; // Display on cursor blinking

rs=1'bl;

end

always@ (negedge clk)

begin
rs <= 1'bl;
en <= 1'bl;

if (reset)



begin
state <= INIT;
init count <= 0;
limit_count <= 0;
clear <= 0;
end
else
begin
case (state)
INIT:
begin
rs <= 0;
data_out <= init[init count];
if (limit_count == clk param)
begin
en <= 0;
limit_count <= 0;
init count <= init count + 1'bl;
if (init count == init_ index)
begin
init_count <= 0;
state <= WAIT;
end
end
else
limit count <= limit count + 1;
end
WAIT:
if (wr _en)
state <= WRITE;
WRITE
begin
data_out <= data_in;
if (limit count == clk param)
begin
en <= 0;
limit_count <= 0;
clear <= clear + 1'bl;
if (clear == char_index)
begin
state <= INIT;
clear <= 0;

end
else
state <= WAIT;
end
else
limit_count <= limit_count + 1;
end
endcase
end

end
endmodule




The working principle of the LCD driver module (as a state machine) is as follows.
The module starts in INIT state where it initializes the display by the predefined
eightbit commands. Using them, we set the display for one line and 5 x 8 dots; then
cleared the display screen; set the cursor direction; and changed the cursor to blinking
mode. After initialization, the machine goes to waTT state where it waits for wr _en
signal to go to logic level 1. Once this happens, the machine goes to wrITE state. Here,
it transfers data in to data out and waits for 1 microsecond. Afterward, the machine
turns back to watT state by incrementing clear vector by one and waits for another
wr_en signal. Once clear reaches 15 in decimal form, that means it reached the end of
the line and it turns back to INTT state and clears the display.

We can connect the LCD to the Basys3 board as follows. The LCD’s eight-bit data
bus line (pB0 to bB7) should be connected to JA port of the board (starting from JA[O]
to JA[7]). Enable signal of the LCD (£) should be connected to JB[0]. Similarly, rs
signal of the LCD should be connected to JB[2]. You can connect the r/w port of the
LCD to ground since we will always be in write mode. Also, do not forget to supply
VDD port of LCD with 5 V and connect VSS to ground. There is a contrast port VO on
the LCD. This port can be connected to ground for maximum contrast. Finally, 2 and
ports control the back light of the LCD screen. You cansetato5 Vor 3.3 V, and
goes to the ground to lit your LCD screen.

The EasyVR shield communicates through the UART interface. Hence, we can use
the UART transmitter and receiver blocks introduced in Chap. 12. After activating the
EasyVR shield, it recognizes words in its predefined word set 1 as default. This word
set includes English words Action, Move, Turn, Run, Look, Attack, Stop, and Hello.
The Spanish translation of these words are Accion, Movimiento, Giro, Correr, Mirar,
Ataque, Detener, and Hola, respectively.

Assuming that the reader does not have an EasyVR module, we simulate the
translation operation by feeding input signals via the first eight switches of the Basys3
board. We provide the Verilog description of the top module for the translator
constructed this way in Listing 13.17. This module has three inputs: c1x (main clock
of Basys3), reset (active-high reset signal), and sw vector (first eight switches on the
Basys3 board). The outputs of the module are rs, en, and data out, all of which are
LCD driving signals.

Listing 13.17 Translator Implemented on the Basys3 Board in Verilog



module translator topmodule (clk,reset,sw,rs,en,data out);

input clk;

input reset;

input [7:0] sw;

output rs;

output en;

output [7:0] data out;

parameter clk param =16000000;

reg [7:0] data [15:0];
reg [7:0] character;
wire [7:0] data in;
integer counter=0;

reg [3:0] index=0;



reg wr _en=0;

LCD driver 0 ledl(.clk(clk),.reset(reset),.wr en(wr_en),.data_in
(data_in),

.data_out (data_out),.en(en),.rs(rs));

assign data_in = character;

always @ (posedge clk)

begin
if (reset)
counter <= 0;
elsge
begin
if (counter == clk param)
counter <= 0;
else
counter <= counter + 1;
end
end

always @ (posedge clk)

begin
if (reset)
begin

wr en <= 0;
index <= 0;
end
else
begin
if (counter == clk param)
begin
wr _en <= 1'bl;
character <= data[index] ;
index <= index + 1'bl;
end
else
wr_en <= 0;
end
end

always @ (posedge clk)

case (sw)

8'h01:

begin // ACTION - ACCICN

data[0] <="A"; data[l]l<="C"; data[2]<="C"; data[3]<="1I";

datal4]<="0"; data[5]<="N"; datal6]l<=" "; datal[7]l<=" ";
data[8]<=" "; data[9]<=" "; datal[l0]<=" "; data[ll]<=" ";
data[l2]<=" "; data[l3]<=" "; data[l4]<=" "; data[l5]<=" ";
end

8'h02:

begin // MOVE - MOVIMIENTO

data[0]<="M"; data[l]<="0"; data[2]<="V"; data[3]<="I";
data[4]<="M"; data[5]<="I"; datal[6]<="E"; datal[7]<="N";
data[8]<="T"; data[9]<="0"; data[l0]<=" "; data[ll]<=" ";






data[l2]l<=" "; data[l3]<="
end

8'ho4:

begin // TURN - GIRO

data[0]<="G"; data[l]l<="1I";

data[4]<=" "; data[5]<=" "
data[8]<=" "; data[9]<=" "
data[l12]<=" "; data[13]<="
end

8'h08:

begin // RUN - CORRER
data[0] <="C"; data[l]<="0O"
data[4] <="E"; data[5]<="R"

data[8]<=" "; data[9]<=" "
dataf[l2]<=" "; data[l3]<="
end

8'h10:

begin // LOOK - MIRAR
data[0] <="M"; data[l]<="I"
data[4]<="R"; data[5]<=" "

data[8]<=" "; data[9]<=" "
data[12]<=" "; datall3]<="
end

8'h20:

begin // ATTACK - ATAQUE
data [0] <="A"; data [l] c=nTn
data[4]<="U"; data[5]<="E"

data[8]<=" "; data[9]<=" "
data[12]<=" "; data[13]<="
end

8'h40:

begin // STOP - DETENER
data[0] <="D"; data[l]<="E"
data[4] <="N"; data[5]<="E"

data[B8]<=" "; data[9]<=" "
datal[l2]<=" "; data[l3]<="
end

8'h80:

begin // HELLO - HOLA

data[0] «<="H"; data[l]<="0";

data[4]<=" "; data[5]<=" ";
data[8]<=" "; data[9]<=" "
data[l2]<=" "; data[l3]<="
end

default:

begin // MAKE A SELECTION
data[0] <="H"; data[l]<="A"
data[4]<="U"; data[5]<="N"
data[8] «<="E"; data[9]<="L"
data[l2]<="C"; data[13]<="
end

endcase

endmodule

"; data[l4]<=" "; data[l5]<=" ";

data [2] <="R"; data[3]<="0";

; datal[é6]<=" "; data[7]<=" ";
; data[10]<=" "; data[l1l]<=" ";
". data[14]<=" ": datal[l5]<=" ";

; data[2]<="R"; data[3]<="R";

; data[6]l<=" "; data[7]l<=" ";
H data[l[}]«;:" Wie data[ll] =" M.
"; data[l4]<=" "; data[15]<=" ";

; data[2]<="R"; datal[3]<="A";

i datal[6]l<=" "; data[7]<=" ";
; data[l0]l<=" "; data[ll]l<=" ";
"; data[l4]l<=" "; data[15]<=" ";

; data[2]<="A"; data[3]<="Q";

i datalel<=" "; datal[Tle=" ";
H data[l(}]‘::" ”; data[ll] =" ";
e data[14]<=" "e data[ls] P

; data [2]{="T”; data[3j <="E";
; datal6]<="R"; data[7]<=" ";
; data[10]l<=" "; datal[ll]l<=" ";

"; data[l4]<=" "; data[l5]<=" ";

data[2] <="L"; datal[3]<="A";

data[6]l<=" "; data[7]l<=" ";
i data[10]<=" s data[ll] <=" ",
". data[l4]<=" "; datal[l5]<=" ";

- HAS UNA ELECCION

; data[2]<="8"; data[3]<=" ";

; data[6]l<="A"; data[7]<=" ";

; data[l10]<="E"; data[ll]<="C";

I"; data[l4]<="0"; data[l5]<="N";

¢

v

']




The top module in Listing 13.17 uses the 1.cp driver module to show the
translation results. The top module has an internal counter which counts up to 160
milli-seconds. If reset signal goes to logic level 1, then counter, wr_en, and index
values will be equal to logic level 0. When counter reaches c1k param (corresponding
to 160 milliseconds), index of data memory is loaded into eight-bit character vector.
This is directly connected to data in of the L.cD driver module. There is a case
statement at the end of the top module which loads Spanish translation corresponding
to the given command (or English word). For our application, depending on which
switch is at logic level 1, the corresponding word is loaded to data memory. Hence,
each character of this word is displayed with the help of the .cp _driver module. The
reader can modify this section if translation to another language is desired.

13.12 Air Freshener Dispenser

We can modify the air freshener dispenser system developed for the MSP430
microcontroller to work on the Basys3 board [32]. The system will have four different
programs to spray fresh odor in 5-, 10-, 15-, and 20-second intervals. These values
should be in minutes in an actual system. However, we set such values to observe the
system output. The system should have a counter for these operations. When counter
reaches the designated time value, the kit sprays the fresh odor and restarts counting
again. We can use two switches to select among four programs. Besides, there should
be an instant spray button. When it is pressed, the fresh odor should be sprayed and the
counter should be reset. When the user selects another program, the counter should
restart again. There should also be an on/off switch for the system. Spraying fresh odor
can be indicated by blinking an LED on the board for three seconds.

13.13 Obstacle-Avoiding Tank

We can modify the obstacle-avoiding tank system developed for the MSP430
microcontroller to work on the Basys3 board [32]. Hence, we will build a tank which
is driven by two stepper motors. The proximity sensors on the front edges of the tank
will be used to sense obstacles on the way. The tank will change its direction by
controlling motor speeds accordingly. The proximity sensor we have used in previous
applications can also be employed for this application. By using the tuning screw on
the sensor, the designer can adjust the distance the tank will turn when it faces an
obstacle.

The sensors can be connected to JB or JC ports of the Basys3 board. The motor
driver should also be connected to the JA port of the board. Since this application will
be integrated on a tank, the board itself can be powered by a battery to ensure
autonomy of the tank. Hence, 5 V has to be applied to external power pins of the
board. If the battery’s voltage is above 5 V, a regulator should be used.

13.14 Intelligent Washing Machine



