complement representation. Hence, we obtain 1111 0010 as the two’s complement
representation of decimal number —14.

6.3 Fixed- and Floating-Point Representations

Binary number to be processed in a digital system may have a fractional part. We
distinguished the integer and fractional parts of such numbers by a dot in the previous
section. This is not possible in a digital system. Instead, there are two methods to
represent a binary number with integer and fractional parts. These are fixed-and
floating-point representations.

6.3.1 Fixed-Point Representation

The number of bits assigned to the integer and fractional parts is fixed in this
representation. Hence the name fixed-point representation. This method is easy to
implement since the number of bits assigned to the integer and fractional parts is fixed.

We can show an unsigned fixed-point number (without a sign bit) as UQp.q. Here,
U indicates the unsigned bit notation; pq represents the number, p being the integer
and q being the fractional part. We provide some fixed-point representation formats in
Table 6.3. Note that we are not limited by these formats in an FPGA implementation
since the user is free to assign any number of bits to the integer and fractional parts.
We will see such examples in Secs. 6.7 and 6.9.

Format | Minimum Maximum Resolution = # bits forp = # bits for q = # total bits
UQ186. 0 216-1 1 16 0 16
Ug.16 | 0 1-2-1 216 0 16 16
UQ16.16 | 0 261 gl 16 16 32

TABLE 6.3 Fixed-Point Unsigned Number Representation Formats

Let’s reconsider the decimal number 14.125. We know that binary representation of
this number is 1110.001. Assume that we would like to represent this number in
UQ16. form. Therefore, there will be no fractional part. The number of bits to be
assigned to the integer part will be 16. Hence, the resulting number in hexadecimal
form will be 000E. Zeros appended to the left of the number will not affect its value.
They will only satisfy the fixed-point representation format. If the UQ16.16 fixed-
point representation is used for the same number, then the integer part of 14.125 will
be the same in hexadecimal form as 000E. The fractional part will be in hexadecimal
form as 0200. Here, zeros are appended to the right of the number. Therefore, the value
of the fractional part will not be affected. As a result, fixed-point representation of the
number will be 000E0200. As can be seen here, there is no separator between the
integer and fractional parts of the number. Knowing that the number is in UQ16.16
form, we can easily extract the integer and fractional parts (since we know the number
of bits assigned to each).



In a similar way, we can represent signed numbers. In this form, the MSB is
reserved for the sign bit. Therefore, we use the sign bit representation here. We
provide three signed bit formats for the fixed-point representation in Table 6.4. Similar
to the unsigned bit representation, fixed-point number will be in the form Qp.q.

Format = Minimum = Maximum Resolution = # bits for p = # bits forq = # total bits
Q15. -5 25 -1 1 15 0 16
015 -1 1-2=% | B 0 15 16
Q15.16 | -2 215 _9-16 | p-16 15 16 32

TABLE 6.4 Fixed-Point Signed Number Representation Formats

Let’s consider the decimal number —14.125. Assume that we would like to
represent this number in Q15. form. The resulting number in hexadecimal form will be
800E. Here, the MSB is set to 1 as the sign bit to represent that the number is negative.
If the Q15.16 fixed-point representation is used for the same number, then
hexadecimal form of the number will be 800£0200. Again, the MSB is kept as the sign
bit in this representation.

6.3.2 Floating-Point Representation

Fixed-point representation is easy to implement and process. However, it has a major
drawback. The number of bits assigned to integer and fractional parts is always fixed
in this representation. This causes limitations both in the range of numbers to be
represented and their resolution. Floating-point representation can be used to overcome
these problems. As the name implies, the number of bits assigned to integer and
fractional parts is not fixed in this representation. Instead, the assigned number of bits
differ for each number depending on its significant digits. Therefore, a much wider
range of values can be represented in this form.

In floating-point representation, a binary number with fractional part will be shown

as N=(—1)% x 2E x F. Here, S stands for the sign bit, E represents the exponent value,
and F stands for the fractional part. Then, floating-point number N is kept in memory
as X = SEF.

To represent a floating-point number as N = (—I)S x 2E x F, the number should be
normalized such that the integer part will have one digit. For ease of binary

representation, the exponent will be biased by 2(¢~/) —1, where e is the number of bits
to be used for E in the given format. Finally, certain number of bits will be assigned to
S, E, and F depending on the standard format used for representation. The IEEE 754
standard is used by most digital systems in floating-point representation. This standard
1s summarized in Table 6.5.



Format Exponent bias = # bits for S = # bits for E | # bits for F | # total bits
Half 15 1 7] 10 16
Single 127 1 8 23 32
Double | 1023 1 11 52 64
Quad 16383 1 15 112 128

TABLE 6.5 The IEEE 754 Standard for Floating-Point
Representation

Let’s take the decimal number 14.125 and represent it in floating-point form. We
will follow the below itemized procedure for this purpose:

* Decide on the format: Let’s pick the “half” format for this example.

* Represent the integer and fractional parts of the decimal number in binary form:
The number becomes 1110.001.

* Decide on the sign bit S: Since the number is positive, (—1)O =1, s=0.
* Normalize the number such that the integer part will have one digit: The number
becomes 1.110001x23.

* Find the exponent value: For the half format, the exponent bias is 15. Therefore,
the exponent will become £ = 15 + 3 = 18 with bias. Or, in binary form e=10010.

* Find the fractional part: The fractional part (after normalization) was 110001.
Since 10 bits should be used to represent the fractional part of the number in half
format, F=1100010000. Remember, since this is the fractional part, we append
extra zeros to its right so that the value of the number is not affected.

* Construct X = SEF: Finally, x = 0 10010 1100010000. Or in hexadecimal form,
X=4B10.

Next, let’s represent the decimal number —14.125 in floating-point form. As in the
previous example, let’s use the half format. Then, the only change will be in the sign
bit. As a result, the number will become x = 1 10010 1100010000. Or in hexadecimal
form, x=cB10.

6.4 ASCII Code

We do not only process numbers in digital systems. For some applications, we may
need to handle characters and symbols as well. We know that everything in a digital
system is represented in binary form. Therefore, characters and symbols should also be
represented as such. One way of representing characters and symbols in binary form is
using the ASCII code. ASCII stands for the American Standard Code for Information
Interchange. The ASCII code for characters and symbols are given in Table 6.6. In this
table, LSB stands for least significant byte and MSB stands for most significant byte.
To represent a specific character (or symbol), its corresponding code should be given.



