

Elegoo Super Starter Kit for UNO

V1.0.17.7.9

2 / 164

Our Company

Preface

Established in 2011, Elegoo Inc. is a thriving technology company dedicated to open-

source hardware research & development, production and marketing. Located in

Shenzhen, the Silicon Valley of China, we have grown to over 150+ employees with

a 10,763+ square ft. factory.

Our product lines rang from DuPont wires, UNO R3 boards to complete starter kits

designed for customers of any level to learn Arduino knowledge. In addition, we also

sell products of Raspberry Pi accessories like 2.8’’ TFT touch and STM32. In the

future we would devote more energy and investment to 3D printer products and so

on. All of our products comply with international quality standards and are greatly

appreciated in a variety of different markets throughout the world.

Official website: http://www.elegoo.com

US Amazon storefront: http://www.amazon.com/shops/A2WWHQ25ENKVJ1

CA Amazon storefront: http://www.amazon.ca/shops/A2WWHQ25ENKVJ1

UK Amazon storefront: http://www.amazon.co.uk/shops/A1780XYQ9DFQM6

DE Amazon storefront: http://www.amazon.de/shops/A1780XYQ9DFQM6

FR Amazon storefront: http://www.amazon.de/shops/A1780XYQ9DFQM6

ES Amazon storefront: http://www.amazon.de/shops/A1780XYQ9DFQM6

IT Amazon storefront: http://www.amazon.de/shops/A1780XYQ9DFQM6

Our Tutorial

This tutorial is designed for beginners. You will learn all the basic information about

how to use Arduino controller board, sensors and components. If you want to study

Arduino in more depth, we recommend that you read the Arduino Cookbook written

by Michael Margolis.

Some codes in this tutorial is edited by Simon Monk. Simon Monk is author of a

number of books relating to Open Source Hardware. They are available in Amazon:

Programming Arduino, 30 Arduino Projects for the Evil Genius and Programming the

Raspberry Pi.

Customer Service

As a continuous and fast growing technology company we keep striving our best to

http://www.elegoo.com/
http://www.amazon.com/shops/A2WWHQ25ENKVJ1
http://www.amazon.ca/shops/A2WWHQ25ENKVJ1
http://www.amazon.co.uk/shops/A1780XYQ9DFQM6
http://www.amazon.de/shops/A1780XYQ9DFQM6
http://www.amazon.de/shops/A1780XYQ9DFQM6
http://www.amazon.de/shops/A1780XYQ9DFQM6
http://www.amazon.de/shops/A1780XYQ9DFQM6

3 / 164

offer you excellent products and quality service as to meet your expectation and you

can reach out to us by simply drop a line at service@elegoo.com or

EUservice@elegoo.com. We look forward to hearing from you and any of your critical

comment or suggestion would be much valuable to us.

And any of problems and questions you have with our products will be promptly

replied by our experienced engineers within 12 hours (24hrs during holiday)

mailto:service@elegoo.com
mailto:EUservice@elegoo.com

4 / 164

5 / 164

6 / 164

7 / 164

8 / 164

Content

Lesson 0 Installing IDE ... 9

Lesson 1 Add Libraries and Open Serial Monitor ... 20

Lesson 2 Blink ... 29

Lesson 3 LED ... 40

Lesson 4 RGB LED ... 47

Lesson 5 Digital Inputs ... 56

Lesson 6 Active buzzer ... 61

Lesson 7 Passive Buzzer ... 65

Lesson 8 Tilt Ball Switch ... 69

Lesson 9 Servo .. 73

Lesson 10 Ultrasonic Sensor Module .. 77

Lesson 11 DHT11 Temperature and Humidity Sensor .. 82

Lesson 12 Analog Joystick Module .. 88

Lesson 13 IR Receiver Module ... 93

Lesson 14 LCD Display .. 99

Lesson 15 Thermometer .. 104

Lesson 16 Eight LED with 74HC595 .. 109

Lesson 17 The Serial Monitor .. 116

Lesson 18 Photocell ... 122

Lesson 19 74HC595 And Segment Display .. 127

Lesson 20 Four Digital Seven Segment Display ... 133

Lesson 21 DC Motors ... 138

Lesson 22 Relay .. 148

Lesson 23 Stepper Motor .. 153

Lesson 24 Controlling Stepper Motor With Remote .. 161

9 / 164

Lesson 0 Installing IDE

Introduction

The Arduino Integrated Development Environment (IDE) is the software side of the

Arduino platform.

In this lesson, you will learn how to setup your computer to use Arduino and how

to set about the lessons that follow.

The Arduino software that you will use to program your Arduino is available for

Windows, Mac and Linux. The installation process is different for all three platforms

and unfortunately there is a certain amount of manual work to install the software.

STEP 1: Go to https://www.arduino.cc/en/Main/Software and find below page.

The version available at this website is usually the latest version, and the actual

version may be newer than the version in the picture.

http://www.arduino.cc/en/Main/Software

10 / 164

STEP2：Download the development software that is compatible with the operating

system of your computer. Take Windows as an example here.

Click Windows Installer.

Click JUST DOWNLOAD.

11 / 164

Also version 1.8.0 is available in the material we provided, and the versions of our

materials are the latest versions when this course was made.

Installing Arduino (Windows)

Install Arduino with the exe. Installation package.

Click I Agree to see the following interface

Click Next

You can press Browse… to choose an installation path or directly type in the

directory you want.

12 / 164

13 / 164

Click Install to initiate installation

Finally, the following interface appears, click Install to finish the installation.

Next, the following icon appears on the desktop

14 / 164

Double-click to enter the desired development environment

You may directly choose the installation package for installation and skip the

contents below and jump to the next section. But if you want to learn some methods

other than the installation package, please continue to read the section.

Unzip the zip file downloaded, Double-click to open the program and enter the

desired development environment

15 / 164

16 / 164

However, this installation method needs separate installation of driver.

The Arduino folder contains both the Arduino program itself and the drivers that

allow the Arduino to be connected to your computer by a USB cable. Before we

launch the Arduino software, you are going to install the USB drivers.

Plug one end of your USB cable into the Arduino and the other into a USB socket on

your computer. The power light on the LED will light up and you may get a 'Found

New Hardware' message from Windows. Ignore this message and cancel any

attempts that Windows makes to try and install drivers automatically for you.

The most reliable method of installing the USB drivers is to use the Device Manager.

This is accessed in different ways depending on your version of Windows. In

Windows 7, you first have to open the Control Panel, then select the option to view

Icons, and you should find the Device Manager in the list.

Under ‘Other Devices’, you should see an icon for ‘unknown device’ with a little

yellow warning triangle next to it. This is your Arduino.

17 / 164

Right-click on the device and select the top menu option (Update Driver Software...).

You will then be prompted to either ‘Search Automatically for updated driver

software’ or ‘Browse my computer for driver software’. Select the option to browse

and navigate to the X\arduino1.8.0\drivers.

18 / 164

Click 'Next' and you may get a security warning, if so, allow the software to be

installed. Once the software has been installed, you will get a confirmation message.

Windows users may skip the installation directions for Mac and Linux systems and

jump to Lesson 1. Mac and Linux users may continue to read this section.

Installing Arduino (Mac OS X)

Download and Unzip the zip file, double click the Arduino.app to enter Arduino IDE;

the system will ask you to install Java runtime library if you don’t have it in your

computer. Once the installation is complete you can run the Arduino IDE.

19 / 164

Installing Arduino (Linux)

You will have to use the make install command. If you are using the Ubuntu system, it is

recommended to install Arduino IDE from the software center of Ubuntu.

TIPS: If you have problems in installing the drivers, please refer to the UNO R3,

MEGA, NANO DRIVER FAQ.

20 / 164

Lesson 1 Add Libraries and Open Serial Monitor

Installing Additional Arduino Libraries

Once you are comfortable with the Arduino software and using the built-in functions,

you may want to extend the ability of your Arduino with additional libraries.

What are Libraries?

Libraries are a collection of code that makes it easy for you to connect to a sensor,

display, module, etc. For example, the built-in LiquidCrystal library makes it easy to

talk to character LCD displays. There are hundreds of additional libraries available

on the Internet for download. The built-in libraries and some of these additional

libraries are listed in the reference. To use the additional libraries, you will need to

install them.

How to Install a Library

Using the Library Manager

To install a new library into your Arduino IDE you can use the Library Manager

(available from IDE version 1.8.0). Open the IDE and click to the "Sketch" menu and

then Include Library > Manage Libraries.

21 / 164

Then the library manager will open and you will find a list of libraries that are already

installed or ready for installation. In this example we will install the Bridge library.

Scroll the list to find it, then select the version of the library you want to install.

Sometimes only one version of the library is available. If the version selection menu

does not appear, don't worry: it is normal.

There are times you have to be patient with it, just as shown in the figure. Please refresh it

and wait.

22 / 164

Finally click on install and wait for the IDE to install the new library. Downloading

may take time depending on your connection speed. Once it has finished,

an Installed tag should appear next to the Bridge library. You can close the library

manager.

You can now find the new library available in the Include Library menu. If you want

to add your own library open a new issue on Github.

Importing a .zip Library

Libraries are often distributed as a ZIP file or folder. The name of the folder is the

name of the library. Inside the folder will be a .cpp file, a .h file and often a

keywords.txt file, examples folder, and other files required by the library. Starting

with version 1.0.5, you can install 3rd party libraries in the IDE. Do not unzip the

downloaded library, leave it as is.

In the Arduino IDE, navigate to Sketch > Include Library. At the top of the drop down

list, select the option to "Add .ZIP Library''.

4

23 / 16

You will be prompted to select the library you would like to add. Navigate to the .zip

file's location and open it.

24 / 164

Return to the Sketch > Import Library menu. You should now see the library at the

bottom of the drop-down menu. It is ready to be used in your sketch. The zip file

will have been expanded in the libraries folder in your Arduino sketches directory.

NB: the Library will be available to use in sketches, but examples for the library will

not be exposed in the File > Examples until after the IDE has restarted.

Those two are the most common approaches. MAC and Linux systems can be

handled likewise. The manual installation to be introduced below as an alternative

may be seldom used and users with no needs may skip it.

Manual installation

To install the library, first quit the Arduino application. Then uncompress the ZIP file

containing the library. For example, if you're installing a library called

25 / 164

"ArduinoParty", uncompress ArduinoParty.zip. It should contain a folder

calledArduinoParty, with files like ArduinoParty.cpp and ArduinoParty.h inside. (If

the .cpp and .h files aren't in a folder, you'll need to create one. In this case, you'd

make a folder called "ArduinoParty" and move into it all the files that were in the

ZIP file, like ArduinoParty.cpp and ArduinoParty.h.)

Drag the ArduinoParty folder into this folder (your libraries folder). Under Windows,

it will likely be called "My Documents\Arduino\libraries". For Mac users, it will likely

be called "Documents/Arduino/libraries". On Linux, it will be the "libraries" folder

in your sketchbook.

Your Arduino library folder should now look like this (on Windows):

My Documents\Arduino\libraries\ArduinoParty\ArduinoParty.cpp

My Documents\Arduino\libraries\ArduinoParty\ArduinoParty.h

My Documents\Arduino\libraries\ArduinoParty\examples

or like this (on Mac and Linux):

Documents/Arduino/libraries/ArduinoParty/ArduinoParty.cpp

Documents/Arduino/libraries/ArduinoParty/ArduinoParty.h

Documents/Arduino/libraries/ArduinoParty/examples

....

There may be more files than just the .cpp and .h files, just make sure they're all

there. (The library won't work if you put the .cpp and .h files directly into the

libraries folder or if they're nested in an extra folder. For example:

Documents\Arduino\libraries\ArduinoParty.cpp and

Documents\Arduino\libraries\ArduinoParty\ArduinoParty\ArduinoParty.cpp won't

work.)

Restart the Arduino application. Make sure the new library appears in the Sketch-

>Import Library menu item of the software. That's it! You've installed a library!

Arduino Serial Monitor (Windows, Mac, Linux)

The Arduino Integrated Development Environment (IDE) is the software side of the

Arduino platform. And, because using a terminal is such a big part of working with

26 / 164

Arduinos and other microcontrollers, they decided to include a serial terminal with

the software. Within the Arduino environment, this is called the Serial Monitor.

Making a Connection

Serial monitor comes with any and all version of the Arduino IDE. To open it, simply

click the Serial Monitor icon.

Selecting which port to open in the Serial Monitor is the same as selecting a port for

uploading Arduino code. Go to Tools -> Serial Port, and select the correct port.

Tips: Choose the same COM port that you have in Device Manager.

27 / 164

Once open, you should see something like this:

28 / 164

Settings

The Serial Monitor has limited settings, but enough to handle most of your serial

communication needs. The first setting you can alter is the baud rate. Click on the

baud rate drop-down menu to select the correct baud rate. (9600 baud)

Last, you can set the terminal to Autoscroll or not by checking the box in the bottom

left corner.

Pros

The Serial Monitor is a great quick and easy way to establish a serial connection with

your Arduino. If you’re already working in the Arduino IDE, there’s really no need to

open up a separate terminal to display data.

Cons

The lack of settings leaves much to be desired in the Serial Monitor, and, for

advanced serial communications, it may not do the trick.

29 / 164

Lesson 2 Blink

Overview

In this lesson, you will learn how to program your UNO R3 controller board to blink

the Arduino’s built-in LED, and how to download programs by basic steps.

Component Required:

(1) x Elegoo Uno R3

Principle

The UNO R3 board has rows of connectors along both sides that are used to connect

to several electronic devices and plug-in 'shields' that extends its capability.

It also has a single LED that you can control from your sketches. This LED is built

onto the UNO R3 board and is often referred to as the 'L' LED as this is how it is

labeled on the board.

30 / 164

You may find that your UNO R3 board's 'L' LED already blinks when you connect it

to a USB plug. This is because the boards are generally shipped with the 'Blink'

sketch pre-installed.

In this lesson, we will reprogram the UNO R3 board with our own Blink sketch and

then change the rate at which it blinks.

In Lesson 0, you set up your Arduino IDE and made sure that you could find the right

serial port for it to connect to your UNO R3 board. The time has now come to put

that connection to the test and program your UNO R3 board.

The Arduino IDE includes a large collection of example sketches that you can load

up and use. This includes an example sketch for making the 'L' LED blink.

Load the 'Blink' sketch that you will find in the IDE's menu system under File >

Examples > 01.Basics

31 / 164

When the sketch window opens, enlarge it so that you can see the entire sketch in

the window.

The example sketches included with the Arduino IDE are 'read-only'. That is, you can

upload them to an UNO R3 board, but if you change them, you cannot save them as

the same file.

Since we are going to change this sketch, the first thing you need to do is save your

own copy.

From the File menu on the Arduino IDE, select 'Save As..' and then save the sketch

with the name 'MyBlink'.

32 / 164

33 / 164

You have saved your copy of 'Blink' in your sketchbook. This means that if you ever

want to find it again, you can just open it using the File > Sketchbook menu option.

34 / 164

Attach your Arduino board to your computer with the USB cable and check that the

'Board Type' and 'Serial Port' are set correctly.

35 / 164

36 / 164

Note: The Board Type and Serial Port here are not necessarily the same as shown

in picture. If you are using 2560, then you will have to choose Mega 2560 as the

Board Type, other choices can be made in the same manner. And the Serial Port

displayed for everyone is different, despite COM 26 chosen here, it could be COM3

or COM4 on your computer. A right COM port is supposed to be COMX (arduino

XXX), which is by the certification criteria.

The Arduino IDE will show you the current settings for board at the bottom of the

window.

Click on the 'Upload' button. The second button from the left on the toolbar.

If you watch the status area of the IDE, you will see a progress bar and a series of

messages. At first, it will say 'Compiling Sketch...'. This converts the sketch into a

format suitable for uploading to the board.

Next, the status will change to 'Uploading'. At this point, the LEDs on the Arduino

should start to flicker as the sketch is transferred.

37 / 164

Finally, the staus will change to 'Done'.

The other message tells us that the sketch is using 928 bytes of the 32,256 bytes

available.After the 'Compiling Sketch..' stage you could get the following error

message:

It can mean that your board is not connected at all, or the drivers have not been

installed (if necessary) or that the wrong serial port is selected.

If you encounter this, go back to Lesson 0 and check your installation.

Once the upload has completed, the board should restart and start blinking.

Open the code

Note that a huge part of this sketch is composed of comments. These are not actual

program instructions; rather, they just explain how the program works. They are

there for your benefit.

Everything between /* and */ at the top of the sketch is a block comment; it explains

what the sketch is for.

38 / 164

Single line comments start with // and everything up until the end of that line is

considered a comment.

The first line of code is:

int led = 13;

As the comment above it explains, this is giving a name to the pin that the LED is

attached to. This is 13 on most Arduinos, including the UNO and Leonardo.

Next, we have the 'setup' function. Again, as the comment says, this is executed

when the reset button is pressed. It is also executed whenever the board resets for

any reason, such as power first being applied to it, or after a sketch has been

uploaded.

void setup() {

// initialize the digital pin as an output.

pinMode(led, OUTPUT);

}

Every Arduino sketch must have a 'setup' function, and the place where you might

want to add instructions of your own is between the { and the }.

In this case, there is just one command there, which, as the comment states tells

the Arduino board that we are going to use the LED pin as an output.

It is also mandatory for a sketch to have a 'loop' function. Unlike the 'setup' function

that only runs once, after a reset, the 'loop' function will, after it has finished running

its commands, immediately start again.

void loop() {

digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)

delay(1000); // wait for a second

digitalWrite(led, LOW); // turn the LED off by making the voltage LOW

delay(1000); // wait for a second

}

Inside the loop function, the commands first of all turn the LED pin on (HIGH), then

'delay' for 1000 milliseconds (1 second), then turn the LED pin off and pause for

another second.

You are now going to make your LED blink faster. As you might have guessed, the

key to this lies in changing the parameter in () for the 'delay' command.

39 / 164

This delay period is in milliseconds, so if you want the LED to blink twice as fast,

change the value from 1000 to 500. This would then pause for half a second each

delay rather than a whole second.

Upload the sketch again and you should see the LED start to blink more quickly.

40 / 164

Lesson 3 LED

Overview

In this lesson, you will learn how to change the brightness of an LED by using

different values of resistor.

Component Required:

(1) x Elegoo Uno R3

(1) x 5mm red LED

(1) x 220 ohm resistor

(1) x 1k ohm resistor

(1) x 10k ohm resistor

(2) x M-M wires (Male to Male jumper wires)

Component Introduction

BREADBOARD MB-102：

A breadboard enables you to prototype circuits quickly, without having to solder

the connections. Below is an example.

41 / 164

Breadboards come in various sizes and configurations. The simplest kind is just a

grid of holes in a plastic block. Inside are strips of metal that provide electrical

connection between holes in the shorter rows. Pushing the legs of two different

components into the same row joins them together electrically. A deep channel

running down the middle indicates that there is a break in connections there,

meaning, you can push a chip in with the legs at either side of the channel without

connecting them together. Some breadboards have two strips of holes running

along the long edges of the board that are separated from the main grid. These have

strips running down the length of the board inside and provide a way to connect a

common voltage. They are usually in pairs for +5 volts and ground. These strips are

referred to as rails and they enable you to connect power to many components or

points in the board.

While breadboards are great for prototyping, they have some limitations. Because

the connections are push-fit and temporary, they are not as reliable as soldered

connections. If you are having intermittent problems with a circuit, it could be due

to a poor connection on a breadboard.

LED:

LEDs make great indicator lights. They use very little electricity and they pretty much

last forever.

In this lesson, you will use perhaps the most common of all LEDs: a 5mm red LED.

5mm refers to the diameter of the LED. Other common sizes are 3mm and 10mm.

You cannot directly connect an LED to a battery or voltage source because 1) the

LED has a positive and a negative lead and will not light if placed the wrong way and

2) an LED must be used with a resistor to limit or 'choke' the amount of current

flowing through it; otherwise, it will burn out!

42 / 164

If you do not use a resistor with an LED, then it may well be destroyed almost

immediately, as too much current will flow through, heating it and destroying the

'junction' where the light is produced.

There are two ways to tell which is the positive lead of the LED and which the

negative.

Firstly, the positive lead is longer.

Secondly, where the negative lead enters the body of the LED, there is a flat edge

to the case of the LED.

If you happen to have an LED that has a flat side next to the longer lead, you should

assume that the longer lead is positive.

RESISTORS:

As the name suggests, resistors resist the flow of electricity. The higher the value of

the resistor, the more it resists and the less electrical current will flow through it.

We are going to use this to control how much electricity flows through the LED and

therefore, how brightly it shines.

But first, more about resistors...

The unit of resistance is called the Ohm, which is usually shortened to Ω the Greek

letter Omega. Because an Ohm is a low value of resistance (it doesn't resist much at

all), we also denote the values of resistors in kΩ (1,000 Ω) and MΩ (1,000,000 Ω).

These are called kilo-ohms and mega-ohms.

In this lesson, we are going to use three different values of resistor: 220Ω, 1kΩ and

10kΩ. These resistors all look the same, except that they have different colored

stripes on them. These stripes tell you the value of the resistor.

The resistor color code has three colored stripes and then a gold stripe at one end.

43 / 164

Unlike LEDs, resistors do not have a positive and negative lead. They can be

connected either way around.

If you find this approach method too complicated, you can read the color ring flag

on our resistors directly to determine its resistance value. Or you may use a digital

multimeter instead.

44 / 164

Connection

Schematic

45 / 164

Wiring diagram

46 / 164

The UNO is a convenient source of 5 volts, which we will use to provide power to

the LED and the resistor. You do not need to do anything with your UNO, except to

plug it into a USB cable.

With the 220 Ω resistor in place, the LED should be quite bright. If you swap out the

220 Ω resistor for the 1kΩ resistor, then the LED will appear a little dimmer. Finally,

with the 10 kΩ resistor in place, the LED will be just about visible. Pull the red jumper

lead out of the breadboard and touch it into the hole and remove it, so that it acts

like a switch. You should just be able to notice the difference.

At the moment, you have 5V going to one leg of the resistor, the other leg of the

resistor going to the positive side of the LED and the other side of the LED going to

GND. However, if we moved the resistor so that it came after the LED, as shown

below, the LED will still light.

You will probably want to put the 220Ω resistor back in place.

It does not matter which side of the LED we put the resistor, as long as it is there

somewhere

Example picture

47 / 164

Lesson 4 RGB LED

Overview

RGB LEDs are a fun and easy way to add some color to your projects. Since they are

like 3 regular LEDs in one, how to use and connect them is not much different.

They come mostly in 2 versions: Common Anode or Common Cathode.

Common Anode uses 5V on the common pin, while Common Cathode connects to

ground.

As with any LED, we need to connect some resistors inline (3 total) so we can limit

the current being drawn.

In our sketch, we will start with the LED in the Red color state, then fade to Green,

then fade to Blue and finally back to the Red color. By doing this we will cycle

through most of the color that can be achieved.

Component Required:

(1) x Elegoo Uno R3

(1) x 830 Tie Points Breadboard

(4) x M-M wires (Male to Male jumper wires)

(1) x RGB LED

(3) x 220 ohm resistors

48 / 164

Component Introduction

RGB:

At first glance, RGB (Red, Green and Blue) LEDs look just like regular LEDs. However,

inside the usual LED package, there are actually three LEDs, one red, one green and

yes, one blue. By controlling the brightness of each of the individual LEDs you can

mix pretty much any color you want.

We mix colors the same way you would mix paint on a palette - by adjusting the

brightness of each of the three LEDs. The hard way to do this would be to use

different value resistors (or variable resistors) as we did with in Lesson 2, but that's

a lot of work! Fortunately for us, UNO R3 board has an analogWrite function that

you can use with pins marked with a ~ to output a variable amount of power to the

appropriate LEDs.

The RGB LED has four leads. There is one lead going to the positive connection of

each of the single LEDs within the package and a single lead that is connected to all

three negative sides of the LEDs.

49 / 164

Here on the photographs you can see 4 electrode LED. Every separate pin for Green

or Blue or Red color is called Anode. You will always connect “+” to it. Cathode goes

to “-“(ground). If you connect it other way round the LED will not light.

The common negative connection of the LED package is the second pin from the flat

side. It is also the longest of the four leads and will be connected to the ground.

Each LED inside the package requires its own 220Ω resistor to prevent too much

current flowing through it. The three positive leads of the LEDs (one red, one green

and one blue) are connected to UNO output pins using these resistors.

50 / 164

COLOR:

The reason that you can mix any color you like by varying the quantities of red, green

and blue light is that your eye has three types of light receptor in it (red, green and

blue). Your eye and brain process the amounts of red, green and blue and convert

it into a color of the spectrum.

In a way, by using the three LEDs, we are playing a trick on the eye. This same idea

is used in TVs, where the LCD has red, green and blue color dots next to each other

making up each pixel.

If we set the brightness of all three LEDs to be the same, then the overall color of

the light will be white. If we turn off the blue LED, so that just the red and green

LEDs are the same brightness, then the light will appear yellow.

We can control the brightness of each of the red, green and blue parts of the LED

separately, making it possible to mix any color we like.

Black is not so much a color as an absence of light. Therefore, the closest we can

come to black with our LED is to turn off all three colors.

51 / 164

Theory (PWM)

Pulse Width Modulation (PWM) is a technique for controlling power.

We also use it here to control the brightness of each of the LEDs.

The diagram below shows the signal from one of the PWM pins on the UNO.

Roughly every 1/500 of a second, the PWM output will produce a pulse. The length

of this pulse is controlled by the 'analogWrite' function. So 'analogWrite(0)' will not

produce any pulse at all and 'analogWrite(255)' will produce a pulse that lasts all the

way until the next pulse is due, so that the output is actually on all the time.

If we specify a value in the analogWrite that is somewhere in between 0 and 255,

then we will produce a pulse. If the output pulse is only high for 5% of the time, then

whatever we are driving will only receive 5% of full power.

If, however, the output is at 5V for 90% of the time, then the load will get 90% of

the power delivered to it. We cannot see the LEDs turning on and off at that speed,

so to us, it just looks like the brightness is changing.

52 / 164

Connection

Schematic

53 / 164

Wiring diagram

54 / 164

Code

After wiring, please open the program in the code folder- Lesson 4 RGB LED, and

click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

Our code will use FOR loops to cycle through the colors.

The first FOR loop will go from RED to GREEN.

The second FOR loop will go from GREEN to BLUE.

The last FOR loop will go from BLUE to RED.

Try the sketch out and then we will dissect it in some detail......

The sketch starts by specifying which pins are going to be used for each of the colors:

// Define Pins

#define BLUE 3

#define GREEN 5

#define RED 6

The next step is to write the 'setup' function. As we have learnt in earlier lessons,

the setup function runs just once after the Arduino has reset. In this case, all it has

to do is define the three pins we are using as being outputs.

void setup()

{

pinMode(RED, OUTPUT);

pinMode(GREEN, OUTPUT);

pinMode(BLUE, OUTPUT);

digitalWrite(RED, HIGH);

digitalWrite(GREEN, LOW);

digitalWrite(BLUE, LOW);

}

Before we take a look at the 'loop' function, let’s look at the last function in the

sketch.

The define variables

redValue = 255; // choose a value between 1 and 255 to change the color.

greenValue = 0;

55 / 164

blueValue = 0;

This function takes three arguments, one for the brightness of the red, green and

blue LEDs. In each case the number will be in the range 0 to 255, where 0 means off

and 255 means maximum brightness. The function then calls 'analogWrite' to set

the brightness of each LED.

If you look at the 'loop' function you can see that we are setting the amount of red,

green and blue light that we want to display and then pausing for a second before

moving on to the next color.

#define delayTime 10 // fading time between colors

Delay(delayTime);

Try adding a few colors of your own to the sketch and watch the effect on your LED.

Example picture

56 / 164

Lesson 5 Digital Inputs

Overview

In this lesson, you will learn to use push buttons with digital inputs to turn an LED

on and off.

Pressing the button will turn the LED on; pressing the other button will turn the LED

off.

Component Required:

(1) x Elegoo Uno R3

(1) x 830 Tie-points Breadboard

(1) x 5mm red LED

(1) x 220 ohm resistor

(2) x push switches

(7) x M-M wires (Male to Male jumper wires)

Component Introduction

PUSH SWITCHES:

Switches are really simple components. When you press a button or flip a lever, they

connect two contacts together so that electricity can flow through them.

The little tactile switches that are used in this lesson have four connections, which

can be a little confusing.

Actually, there are only really two electrical connections. Inside the switch package,

pins B and C are connected together, as are A and D.

57 / 164

Connection

Schematic

58 / 164

Wiring diagram

59 / 164

Although the bodies of the switches are square, the pins protrude from opposite

sides of the switch. This means that the pins will only be far enough apart when they

are placed correctly on the breadboard.

Remember that the LED has to have the shorter negative lead to the left.

Code

After wiring，please open program in the code folder- Lesson 5 Digital Inputs, and

press UPLOAD to upload the program. If errors are prompted, see Lesson 2 for

details about the tutorial on program upload.

Load the sketch onto your UNO board. Pressing the left button will turn the LED on

while pressing the right button will turn it off.

The first part of the sketch defines three variables for the three pins that are to be

used. The 'ledPin' is the output pin and 'buttonApin' will refer to the switch nearer

the top of the breadboard and 'buttonBpin' to the other switch.

The 'setup' function defines the ledPin as being an OUTPUT as normal, but now we

have the two inputs to deal with. In this case, we use the set the pinMode to be

'INPUT_PULLUP' like this:

pinMode(buttonApin, INPUT_PULLUP);

pinMode(buttonBpin, INPUT_PULLUP);

The pin mode of INPUT_PULLUP means that the pin is to be used as an input, but

that if nothing else is connected to the input, it should be 'pulled up' to HIGH. In

other words, the default value for the input is HIGH, unless it is pulled LOW by the

action of pressing the button.

This is why the switches are connected to GND. When a switch is pressed, it

connects the input pin to GND, so that it is no longer HIGH.

Since the input is normally HIGH and only goes LOW when the button is pressed, the

logic is a little upside down. We will handle this in the 'loop' function.

void loop()

{

if (digitalRead(buttonApin) == LOW)

{

digitalWrite(ledPin, HIGH);

}

if (digitalRead(buttonBpin) == LOW)

60 / 164

{

digitalWrite(ledPin, LOW);

}

}

In the 'loop' function there are two 'if' statements. One for each button. Each does

an 'digitalRead' on the appropriate input.

Remember that if the button is pressed, the corresponding input will be LOW, if

button A is low, then a 'digitalWrite' on the ledPin turns it on.

Similarly, if button B is pressed, a LOW is written to the ledPin.

Example picture

Lesson 6 Active buzzer

Overview

In this lesson, you will learn how to generate a sound with an active buzzer.

Component Required:

(1) x Elegoo Uno R3

(1) x Active buzzer

(2) x F-M wires (Female to Male DuPont wires)

Component Introduction

BUZZER:

Electronic buzzers are DC-powered and equipped with an integrated circuit. They

are widely used in computers, printers, photocopiers, alarms, electronic toys,

automotive electronic devices, telephones, timers and other electronic products for

voice devices. Buzzers can be categorized as active and passive ones. Turn the pins

of two buzzers face up. The one with a green circuit board is a passive buzzer, while

the other enclosed with a black tape is an active one.

The difference between the two is that an active buzzer has a built-in oscillating

source, so it will generate a sound when electrified. A passive buzzer does not have

such a source so it will not tweet if DC signals are used; instead, you need to use

square waves whose frequency is between 2K and 5K to drive it. The active buzzer

is often more expensive than the passive one because of multiple built-in oscillating

circuits.

61 / 164

62 / 164

Connection

Schematic

Wiring diagram

63 / 164

64 / 164

Code

After wiring, please open the program in the code folder- Lesson 6 Making Sounds

and click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

Example picture

Lesson 7 Passive Buzzer

Overview

In this lesson, you will learn how to use a passive buzzer.

The purpose of the experiment is to generate eight different sounds, each sound

lasting 0.5 seconds: from Alto Do (523Hz), Re (587Hz), Mi (659Hz), Fa (698Hz), So

(784Hz), La (880Hz), Si (988Hz) to Treble Do (1047Hz).

Component Required:

(1) x Elegoo Uno R3

(1) x Passive buzzer

(2) x F-M wires (Female to Male DuPont wires)

Component Introduction

Passive Buzzer:

The working principle of passive buzzer is using PWM generating audio to make the

air to vibrate. Appropriately changed as long as the vibration frequency, it can

generate different sounds. For example, sending a pulse of 523Hz, it can generate

Alto Do, pulse of 587Hz, it can generate midrange Re, pulse of 659Hz, it can produce

midrange Mi. By the buzzer, you can play a song.

We should be careful not to use the UNO R3 board analog Write () function to

generate a pulse to the buzzer, because the pulse output of analog Write () is fixed

(500Hz).

65 / 164

66 / 164

Connection

Schematic

67 / 164

Wiring diagram

68 / 164

Wiring the buzzer connected to the UNO R3 board, the red (positive) to the pin8,

black wire (negative) to the GND.

Code

After wiring, please open the program in the code folder- Lesson 7 Passive Buzzer and

click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

Before you can run this, make sure that you have installed the <pitches> library or

re-install it, if necessary. Otherwise, your code won't work.

For details about loading the library file, see Lesson 1.

Example picture

69 / 164

Lesson 8 Tilt Ball Switch

Overview

In this lesson, you will learn how to use a tilt ball switch in order to detect small

angle of inclination.

Component Required:

(1) x Elegoo Uno R3

(1) x Tilt Ball switch

(2) x F-M wires (Female to Male DuPont wires)

Component Introduction

Tilt sensor:

Tilt sensors (tilt ball switch) allow you to detect orientation or inclination. They are

small, inexpensive, low-power and easy-to-use. If used properly, they will not wear

out. Their simplicity makes them popular for toys, gadgets and appliances.

Sometimes, they are referred to as "mercury switches", "tilt switches" or "rolling

ball sensors" for obvious reasons.

They are usually made up of a cavity of some sort (cylindrical is popular, although

not always) with a conductive free mass inside, such as a blob of mercury or rolling

ball. One end of the cavity has two conductive elements (poles). When the sensor is

oriented so that that end is downwards, the mass rolls onto the poles and shorts

them, acting as a switch throw.

While not as precise or flexible as a full accelerometer, tilt switches can detect

motion or orientation. Another benefit is that the big ones can switch power on

their own. Accelerometers, on the other hand, output digital or analog voltage that

must then be analyzed using extra circuitry.

70 / 164

Connection

Schematic

71 / 164

Wiring diagram

72 / 164

Code

After wiring, please open the program in the code folder- Lesson 8 Ball Switch and

click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

Example picture

Lesson 9 Servo

Overview

Servo is a type of geared motor that can only rotate 180 degrees. It is controlled by

sending electrical pulses from your UNO R3 board. These pulses tell the servo what

position it should move to. The Servo has three wires, of which the brown one is the

ground wire and should be connected to the GND port of UNO, the red one is the

power wire and should be connected to the 5v port, and the orange one is the signal

wire and should be connected to the Dig #9 port.

Component Required:

(1) x Elegoo Uno R3

(1) x Servo (SG90)

(3) x M-M wires (Male to Male jumper wires)

Component Introduction

SG90

 Universal for JR and FP connector

 Cable length : 25cm

 No load; Operating speed: 0.12 sec / 60 degree (4.8V), 0.10 sec / 60 degree (6.0V)

 Stall torque (4.8V): 1.6kg/cm

 Temperature : -30~60'C

 Dead band width: 5us

 Working voltage: 3.5~6V

 Dimension : 1.26 in x 1.18 in x 0.47 in (3.2 cm x 3 cm x 1.2 cm)

 Weight : 4.73 oz (134 g)

73 / 164

74 / 164

Connection

Schematic

75 / 164

Wiring diagram

76 / 164

Code

After wiring, please open the program in the code folder- Lesson 9 Servo and click

UPLOAD to upload the program. See Lesson 2 for details about program uploading if

there are any errors.

Before you can run this, make sure that you have installed the < Servo> library or

re-install it, if necessary. Otherwise, your code won't work.

For details about loading the library file, see Lesson 1.

Example picture

In the picture, the brown wire of servo is adapted via the black M-M wires, the red

one is adapted via the red M-M wires, and the orange one is adapted via the yellow

M-M wires.

77 / 164

Lesson 10 Ultrasonic Sensor Module

Overview

Ultrasonic sensor is great for all kind of projects that need distance measurements,

avoiding obstacles as examples.

The HC-SR04 is inexpensive and easy to use since we will be using a Library

specifically designed for these sensor.

Component Required:

(1) x Elegoo Uno R3

(1) x Ultrasonic sensor module

(4) x F-M wires (Female to Male DuPont wires)

Component Introduction

Ultrasonic sensor

Ultrasonic sensor module HC-SR04 provides 2cm-400cm non-contact measurement

function, the ranging accuracy can reach to 3mm. The modules includes ultrasonic

transmitters, receiver and control circuit. The basic principle of work:

(1) Using IO trigger for at least 10us high level signal,

(2) The Module automatically sends eight 40 kHz and detect whether there is a pulse

signal back.

(3) IF the signal back, through high level , time of high output IO duration is the time

from sending ultrasonic tore turning.

Test distance = (high level time × velocity of sound (340m/s) /2

The Timing diagram is shown below. You only need to supply a short 10us pulse to

the trigger input to start the ranging, and then the module will send out an 8 cycle

burst of ultrasound at 40 kHz and raise its echo. The Echo is a distance object that is

pulse width and the range in proportion .You can calculate the range through the

time interval between sending trigger signal and receiving echo signal. Formula: us

/ 58 = centimeters or us / 148 =inch; or: the range = high level time * velocity

(340M/S) / 2; we suggest to use over 60ms measurement cycle, in order to prevent

trigger signal to the echo signal.

78 / 164

Connection

Schematic

79 / 164

Wiring diagram

80 / 164

Code

Using a Library designed for these sensors will make our code short and simple.

We include the library at the beginning of our code, and then by using simple

commands we can control the behavior of the sensor.

After wiring, please open the program in the code folder- Lesson 10 Ultrasonic Sensor

Module and click UPLOAD to upload the program. See Lesson 2 for details about

program uploading if there are any errors.

Before you can run this, make sure that you have installed the < HC-SR04> library or

re-install it, if necessary. Otherwise, your code won't work.

For details about loading the library file, see Lesson 1.

Example picture

81 / 164

Open the monitor then you can see the data as blow:

Click the Serial Monitor button to turn on the serial monitor. The basics about the serial

monitor are introduced in details in Lesson 1.

82 / 164

Lesson 11 DHT11 Temperature and Humidity Sensor

Overview

In this tutorial we will learn how to use a DHT11 Temperature and Humidity Sensor.

It’s accurate enough for most projects that need to keep track of humidity and

temperature readings.

Again we will be using a Library specifically designed for these sensors that will make

our code short and easy to write.

Component Required:

(1) x Elegoo Uno R3

(1) x DHT11 Temperature and Humidity module

(3) x F-M wires (Female to Male DuPont wires)

Component Introduction

Temp and humidity sensor:

DHT11 digital temperature and humidity sensor is a composite Sensor which

contains a calibrated digital signal output of the temperature and humidity. The

dedicated digital modules collection technology and the temperature and humidity

sensing technology are applied to ensure that the product has high reliability and

83 / 164

excellent long-term stability. The sensor includes a resistive sense of wet

components and a NTC temperature measurement devices, and connects with a

high-performance 8-bit microcontroller.

Applications: HVAC, dehumidifier, testing and inspection equipment, consumer

goods, automotive, automatic control, data loggers, weather stations, home

appliances, humidity regulator, medical and other humidity measurement and

control.

Product parameters

Relative humidity:

Resolution: 16Bit

Repeatability: ±1% RH

Accuracy: At 25℃ ±5% RH

Interchangeability: fully interchangeable

Response time: 1 / e (63%) of 25℃ 6s

1m / s air 6s

Hysteresis: <± 0.3% RH

Long-term stability: <± 0.5% RH / yr in

Temperature:

Resolution: 16Bit

Repeatability: ±0.2℃

Range: At 25℃ ±2℃

Response time: 1 / e (63%) 10S

Electrical Characteristics

Power supply: DC 3.5～5.5V

Supply Current: measurement 0.3mA standby 60μA

Sampling period: more than 2 seconds

Pin Description:

1. the VDD power supply 3.5～5.5V DC

2. DATA serial data, a single bus

3. NC, empty pin

4. GND ground, the negative power

84 / 164

Connection

Schematic

85 / 164

Wiring diagram

86 / 164

As you can see we only need 3 connections to the sensor, since one of the pin is not

used.

The connections are: Voltage, Ground and Signal which can be connected to any Pin

on our UNO.

Code

After wiring, please open the program in the code folder- Lesson 12 DHT11

Temperature and Humidity Sensor and click UPLOAD to upload the program. See

Lesson 2 for details about program uploading if there are any errors.

Before you can run this, make sure that you have installed the < SimpleDHT> library

or re-install it, if necessary. Otherwise, your code won't work.

For details about the tutorial on the loading of library file, see Lesson 1.

Example picture

Upload the program then open the monitor, we can see the data as below: (It shows

the temperature of the environment, we can see it is 22 degree)

Click the Serial Monitor button to turn on the serial monitor. The basics about the serial

monitor are introduced in details in Lesson 1.

87 / 164

Lesson 12 Analog Joystick Module

Overview

Analog joysticks are a great way to add some control in your projects.

In this tutorial we will learn how to use the analog joystick module.

Component Required:

(1) x Elegoo Uno R3

(1) x Joystick module

(5) x F-M wires (Female to Male DuPont wires)

Component Introduction

Joystick

The module has 5 pins: VCC, Ground, X, Y, Key. Note that the labels on yours may

be slightly different, depending on where you got the module from. The thumb stick

is analog and should provide more accurate readings than simple ‘directional’

joysticks tact use some forms of buttons, or mechanical switches. Additionally, you

can press the joystick down (rather hard on mine) to activate a ‘press to select’ push-

button.

We have to use analog Arduino pins to read the data from the X/Y pins, and a digital

pin to read the button. The Key pin is connected to ground, when the joystick is

pressed down, and is floating otherwise. To get stable readings from the Key /Select

pin, it needs to be connected to VCC via a pull-up resistor. The built in resistors on

the Arduino digital pins can be used. For a tutorial on how to activate the pull-up

resistors for Arduino pins, configured as inputs

88 / 164

Connection

Schematic

89 / 164

90 / 164

Wiring diagram

91 / 164

We need 5 connections to the joystick.

The connections are: Key, Y, X, Voltage and Ground.

“Y and X” are Analog and “Key” is Digital. If you don’t need the switch then you can

use only 4 pins.

Code

After wiring, please open the program in the code folder- Lesson 13 Analog Joystick

Module and click UPLOAD to upload the program. See Lesson 2 for details about

program uploading if there are any errors.

Analog joysticks are basically potentiometers so they return analog values.

When the joystick is in the resting position or middle, it should return a value of

about 512.

The range of values goes from 0 to 1024.

Example picture

92 / 164

Open the monitor then you can see the data as blow:

Click the Serial Monitor button to turn on the serial monitor. The basics about the serial

monitor are introduced in details in Lesson 1.

93 / 164

Lesson 13 IR Receiver Module

Overview

Using an IR Remote is a great way to have wireless control of your project.

Infrared remotes are simple and easy to use. In this tutorial we will be connecting

the IR receiver to the UNO, and then use a Library that was designed for this

particular sensor.

In our sketch we will have all the IR Hexadecimal codes that are available on this

remote, we will also detect if the code was recognized and also if we are holding

down a key.

Component Required:

(1) x Elegoo Uno R3

(1) x IR receiver module

(1) x IR remote

(3) x F-M wires (Female to Male DuPont wires)

Component Introduction

IR RECEIVER SENSOR:

IR detectors are little microchips with a photocell that are tuned to listen to infrared

light. They are almost always used for remote control detection - every TV and DVD

player has one of these in the front to listen for the IR signal from the clicker. Inside

the remote control is a matching IR LED, which emits IR pulses to tell the TV to turn

on, off or change channels. IR light is not visible to the human eye, which means it

takes a little more work to test a setup.

There are a few difference between these and say a CdS Photocells:

IR detectors are specially filtered for IR light, they are not good at detecting visible

light. On the other hand, photocells are good at detecting yellow/green visible light,

and are not good at IR light.

IR detectors have a demodulator inside that looks for modulated IR at 38 KHz. Just

shining an IR LED won't be detected, it has to be PWM blinking at 38KHz. Photocells

do not have any sort of demodulator and can detect any frequency (including DC)

within the response speed of the photocell (which is about 1KHz)

94 / 164

IR detectors are digital out - either they detect 38KHz IR signal and output low (0V)

or they do not detect any and output high (5V). Photocells act like resistors, the

resistance changes depending on how much light they are exposed to.

What You Can Measure

As you can see from these datasheet graphs, the peak frequency detection is at 38

KHz and the peak LED color is 940 nm. You can use from about 35 KHz to 41 KHz but

the sensitivity will drop off so that it won't detect as well from afar. Likewise, you

can use 850 to 1100 nm LEDs but they won't work as well as 900 to 1000nm so make

sure to get matching LEDs! Check the datasheet for your IR LED to verify the

wavelength.

Try to get a 940nm - remember that 940nm is not visible light!

95 / 164

Connection

Schematic

96 / 164

Wiring diagram

97 / 164

There are 3 connections to the IR Receiver.

The connections are: Signal, Voltage and Ground.

The “-” is the Ground, “S” is signal, and middle pin is Voltage 5V.

Code

After wiring, please open the program in the code folder- Lesson 14 IR Receiver Module

and click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

Before you can run this, make sure that you have installed the < IRremote > library

or re-install it, if necessary. Otherwise, your code won't work.

For details about loading the library file, see Lesson 1.

Next we will move the <RobotIRremote> out of the Library folder, we do this

because that library conflicts with the one we will be using. You can just drag it

back inside the library folder once you are done programming your microcontroller.

Once you have installed the Library, just go ahead and restart your IDE Software.

Example picture

98 / 164

Open the monitor then you can see the data as blow:

Click the Serial Monitor button to turn on the serial monitor. The basics about the serial

monitor are introduced in details in Lesson 1.

99 / 164

Lesson 14 LCD Display

Overview

In this lesson, you will learn how to wire up and use an alphanumeric LCD display.

The display has an LED backlight and can display two rows with up to 16 characters

on each row. You can see the rectangles for each character on the display and the

pixels that make up each character. The display is just white on blue and is intended

for showing text.

In this lesson, we will run the Arduino example program for the LCD library, but in

the next lesson, we will get our display to show the temperature, using sensors.

Component Required:

(1) x Elegoo Uno R3

(1) x LCD1602 module

(1) x Potentiometer (10k)

(1) x 830 tie-points Breadboard

(16) x M-M wires (Male to Male jumper wires)

Component Introduction

LCD1602

Introduction to the pins of LCD1602:

VSS: A pin that connects to ground

VDD: A pin that connects to a +5V power supply

VO: A pin that adjust the contrast of LCD1602

RS: A register select pin that controls where in the LCD’s memory you are writing data

to. You can select either the data register, which holds what goes on the screen, or an

instruction register, which is where the LCD’s controller looks for instructions on what

to do next.

R/W: A Read/Write pin that selects reading mode or writing mode

E: An enabling pin that, when supplied with low-level energy, causes the LDC module

to execute relevant instructions.

D0-D7：Pins that read and write data

A and K: Pins that control the LED backlight

100 / 164

Connection
Schematic

101 / 164

Wiring diagram

102 / 164

The LCD display needs six Arduino pins, all set to be digital outputs. It also needs 5V

and GND connections.

There are a number of connections to be made. Lining up the display with the top

of the breadboard helps to identify its pins without too much counting, especially if

the breadboard has its rows numbered with row 1 as the top row of the board. Do

not forget, the long yellow lead that links the slider of the pot to pin 3 of the display.

The 'pot' is used to control the contrast of the display.

You may find that your display is supplied without header pins attached to it. If so,

follow the instructions in the next section.

Code

After wiring, please open the program in the code folder- Lesson 22 LCD Display and

click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

Before you can run this, make sure that you have installed the < LiquidCrystal >

library or re-install it, if necessary. Otherwise, your code won't work.

For details about loading the library file, see Lesson 1.

Upload the code to your Arduino board and you should see the message 'hello,

world' displayed, followed by a number that counts up from zero.

The first thing of note in the sketch is the line:

#include <LiquidCrystal.h>

This tells Arduino that we wish to use the Liquid Crystal library.

Next we have the line that we had to modify. This defines which pins of the Arduino

are to be connected to which pins of the display.

LiquidCrystal lcd(7, 8, 9, 10, 11, 12);

After uploading this code, make sure the backlight is lit up, and adjust the

potentiometer all the way around until you see the text message

In the 'setup' function, we have two commands:

lcd.begin(16, 2);

lcd.print("Hello, World!");

The first tells the Liquid Crystal library how many columns and rows the display has.

The second line displays the message that we see on the first line of the screen.

In the 'loop' function, we aso have two commands:

lcd.setCursor(0, 1);

lcd.print(millis()/1000);

103 / 164

The first sets the cursor position (where the next text will appear) to column 0 &

row 1. Both column and row numbers start at 0 rather than 1.

The second line displays the number of milliseconds since the Arduino was reset.

Example picture

104 / 164

Lesson 15 Thermometer

Overview

In this lesson, you will use an LCD display to show the temperature.

Component Required:

(1) x Elegoo Uno R3

(1) x LCD1602 Module

(1) x 10k ohm resistor

(1) x Thermistor

(1) x Potentiometer

(1) x 830 tie-points Breadboard

(18) x M-M wires (Male to Male jumper wires)

Component Introduction

Thermistor

A thermistor is a thermal resistor - a resistor that changes its resistance with

temperature. Technically, all resistors are thermistors - their resistance changes

slightly with temperature - but the change is usually very small and difficult to

measure. Thermistors are made so that the resistance changes drastically with

temperature so that it can be 100 ohms or more of change per degree!

There are two kinds of thermistors, NTC (negative temperature coefficient) and PTC

(positive temperature coefficient). In general, you will see NTC sensors used for

temperature measurement. PTC's are often used as resettable fuses - an increase in

temperature increases the resistance which means that as more current passes thru

them, they heat up and 'choke back' the current, quite handy for protecting circuits!

105 / 164

Connection
Schematic

106 / 164

Wiring diagram

107 / 164

The breadboard layout is based on the layout from Lesson 22, so it will simplify

things if you still have this on the breadboard.

There are a few jumper wires near the pot that have been moved slightly on this

layout.

The 10 kΩ resistor and thermistor are all new additions to the board.

Code

After wiring, please open the program in the code folder- Lesson 23 Thermometer

and click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

Before you can run this, make sure that you have installed the < LiquidCrystal >

library or re-install it, if necessary. Otherwise, your code won't work.

For details about loading the library file, see Lesson 1.

The sketch for this is based on that of lesson 22. Load it up onto your Arduino and

you should find that warming the temperature sensor by putting your finger on it

will increase the temperature reading.

I find it useful to put a comment line above the 'lcd' command.

// BS E D4 D5 D6 D7

LiquidCrystal lcd(7, 8, 9, 10, 11, 12);

This makes things easier if you decide to change which pins you use.

In the 'loop' function there are now two interesting things going on. Firstly we have

to convert the analog from the temperature sensor into an actual temperature, and

secondly we have to work out how to display them.

First of all, let's look at calculating the temperature.

int tempReading = analogRead(tempPin);

double tempK = log(10000.0 * ((1024.0 / tempReading - 1)));

tempK = 1 / (0.001129148 + (0.000234125 + (0.0000000876741 * tempK * tempK))

* tempK);

float tempC = tempK - 273.15;

float tempF = (tempC * 9.0)/ 5.0 + 32.0;

Displaying changing readings on an LCD display can be tricky. The main problem is

that the reading may not always be the same number of digits. So, if the

temperature changed from 101.50 to 99.00 then the extra digit from the old reading

is in danger of being left on the display.

To avoid this, write the whole line of the LCD each time around the loop.

108 / 164

lcd.setCursor(0, 0);

lcd.print("Temp C ");

lcd.setCursor(6, 0);

lcd.print(tempF);

The rather strange comment serves to remind you of the 16 columns of the display.

You can then print a string of that length with spaces where the actual reading will

go.

To fill in the blanks, set the cursor position for where the reading should appear and

then print it.

Example picture

109 / 164

Lesson 16 Eight LED with 74HC595

Overview

In this lesson, you will learn how to use eight large red LEDs with an UNO without

needing to give up 8 output pins!

Although you could wire up eight LEDs each with a resistor to an UNO pin you would

rapidly start to run out of pins on your UNO. If you don't have a lot of stuff connected

to your UNO. It's OK to do so - but often times we want buttons, sensors, servos,

etc. and before you know it you've got no pins left. So, instead of doing that, you

are going to use a chip called the 74HC595 Serial to Parallel Converter. This chip has

eight outputs (perfect) and three inputs that you use to feed data into it a bit at a

time.

This chip makes it a little slower to drive the LEDs (you can only change the LEDs

about 500,000 times a second instead of 8,000,000 a second) but it's still really fast,

way faster than humans can detect, so it's worth it!

Component Required:

(1) x Elegoo Uno R3

(1) x 830 tie-points breadboard

(8) x leds

(8) x 220 ohm resistors

(1) x 74hc595 IC

(14) x M-M wires (Male to Male jumper wires)

Component Introduction

74HC595 Shift Register:

The shift register is a type of chip that holds what can be thought of as eight memory

locations, each of which can either be a 1 or a 0. To set each of these values on or

off, we feed in the data using the 'Data' and 'Clock' pins of the chip.

119 / 164

111 / 164

The clock pin needs to receive eight pulses. At each pulse, if the data pin is high,

then a 1 gets pushed into the shift register; otherwise, a 0. When all eight pulses

have been received, enabling the 'Latch' pin copies those eight values to the latch

register. This is necessary; otherwise, the wrong LEDs would flicker as the data is

being loaded into the shift register.

The chip also has an output enable (OE) pin, which is used to enable or disable the

outputs all at once. You could attach this to a PWM-capable UNO pin and use

'analogWrite' to control the brightness of the LEDs. This pin is active low, so we tie

it to GND.

Connection

Schematic

112 / 164

Wiring diagram

113 / 164

As we have eight LEDs and eight resistors to connect, there are actually quite a few

connections to be made.

It is probably easiest to put the 74HC595 chip in first, as pretty much everything else

connects to it. Put it so that the little U-shaped notch is towards the top of the

breadboard. Pin 1 of the chip is to the left of this notch.

Digital 12 from the UNO goes to pin #14 of the shift register

Digital 11 from the UNO goes to pin #12 of the shift register

Digital 9 from the UNO goes to pin #11 of the shift register

All but one of the outputs from the IC is on the left side of the chip. Hence, for ease

of connection, that is where the LEDs are, too.

After the chip, put the resistors in place. You need to be careful that none of the

leads of the resistors are touching each other. You should check this again before

you connect the power to your UNO. If you find it difficult to arrange the resistors

without their leads touching, then it helps to shorten the leads so that they are lying

closer to the surface of the breadboard.

Next, place the LEDs on the breadboard. The longer positive LED leads must all be

towards the chip, whichever side of the breadboard they are on.

Attach the jumper leads as shown above. Do not forget the one that goes from pin

8 of the IC to the GND column of the breadboard.

Load up the sketch listed a bit later and try it out. Each LED should light in turn until

all the LEDs are on, and then they all go off and the cycle repeats.

Code

After wiring, please open the program in the code folder- Lesson 24 Eight LED with

74HC595 and click UPLOAD to upload the program. See Lesson 2 for details about

program uploading if there are any errors.

The first thing we do is define the three pins we are going to use. These are the UNO

digital outputs that will be connected to the latch, clock and data pins of the

74HC595.

int latchPin = 11;

int clockPin = 9;

int dataPin = 12;

Next, a variable called 'leds' is defined. This will be used to hold the pattern of which

LEDs are currently turned on or off. Data of type 'byte' represents numbers using

eight bits. Each bit can be either on or off, so this is perfect for keeping track of

114 / 164

which of our eight LEDs are on or off.

byte leds = 0;

The 'setup' function just sets the three pins we are using to be digital outputs.

void setup()

{

pinMode(latchPin, OUTPUT);

pinMode(dataPin, OUTPUT);

pinMode(clockPin, OUTPUT);

}

The 'loop' function initially turns all the LEDs off, by giving the variable 'leds' the

value 0. It then calls 'updateShiftRegister' that will send the 'leds' pattern to the shift

register so that all the LEDs turn off. We will deal with how 'updateShiftRegister'

works later.

The loop function pauses for half a second and then begins to count from 0 to 7

using the 'for' loop and the variable 'i'. Each time, it uses the Arduino function

'bitSet' to set the bit that controls that LED in the variable 'leds'. It then also calls

'updateShiftRegister' so that the leds update to reflect what is in the variable 'leds'.

There is then a half second delay before 'i' is incremented and the next LED is lit.

void loop()

{

leds = 0;

updateShiftRegister();

delay(500);

for (int i = 0; i < 8; i++)

{

bitSet(leds, i);

updateShiftRegister();

delay(500);

}

}

The function 'updateShiftRegister', first of all sets the latchPin to low, then calls the

UNO function 'shiftOut' before putting the 'latchPin' high again. This takes four

parameters, the first two are the pins to use for Data and Clock respectively.

The third parameter specifies which end of the data you want to start at. We are

going to start with the right most bit, which is referred to as the 'Least Significant

115 / 164

Example picture

Bit' (LSB).

The last parameter is the actual data to be shifted into the shift register, which in

this case is 'leds'.

void updateShiftRegister()

{

digitalWrite(latchPin, LOW);

shiftOut(dataPin, clockPin, LSBFIRST, leds);

digitalWrite(latchPin, HIGH);

}

If you wanted to turn one of the LEDs off rather than on, you would call a similar

Arduino function (bitClear) with the 'leds' variable. This will set that bit of 'leds' to

be 0 and you would then just need to follow it with a call to 'updateShiftRegister' to

update the actual LEDs.

116 / 164

Lesson 17 The Serial Monitor

Overview

In this lesson, you will build on Lesson 16, adding the facility to control the

LEDs from your computer using the Arduino Serial Monitor. The serial monitor

is the 'tether' between the computer and your UNO. It lets you send and

receive text messages, handy for debugging and also controlling the UNO from a

keyboard! For example, you will be able to send commands from your computer

to turn on LEDs. In this lesson, you will use exactly the same parts and a similar

breadboard layout as Lesson 16. So, if you have not already done so, follow

Lesson 16 now.

Steps taken

After you have uploaded this sketch onto your UNO, click on the right-most

button on the toolbar in the Arduino IDE. The button is circled below.

117 / 164

The following window will open.

Click the Serial Monitor button to turn on the serial monitor. The basics about the

serial monitor are introduced in details in Lesson 1.

This window is called the Serial Monitor and it is part of the Arduino IDE software.

Its job is to allow you to both send messages from your computer to an UNO board

(over USB) and also to receive messages from the UNO.

The message “Enter LED Number 0 to 7or 'x' to clear” has been sent by the Arduino.

It is telling us what commands we can send to the Arduino: either send the 'x' (to

turn all the LEDs off) or the number of the LED you want to turn on (where 0 is the

bottom LED, 1 is the next one up, all the way to 7 for the top LED).

Try typing the following commands into the top area of the Serial Monitor that is

level with the 'Send' button. Press 'Send', after typing each of these characters: x 0

3 5

Typing x will have no effect if the LEDs are already all off, but as you enter each

number, the corresponding LED should light and you will get a confirmation

message from the UNO board. The Serial Monitor will appear as shown below.

118 / 164

Type x again and press ‘Send’ to turn off all LEDs.

Code

After wiring, please open program in the code folder- Lesson 25 The Serial Monitor

and click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

As you might expect, the sketch is based on the sketch used in Lesson 24. So, we will

just cover the new bits here. You will find it useful to refer to the full sketch in your

Arduino IDE.

In the 'setup' function, there are three new lines at the end:

void setup()

{

pinMode(latchPin, OUTPUT);

pinMode(dataPin, OUTPUT);

pinMode(clockPin, OUTPUT);

updateShiftRegister();

Serial.begin(9600);

119 / 164

while (! Serial); // Wait until Serial is ready - Leonardo

Serial.println("Enter LED Number 0 to 7 or 'x' to clear");

}

Firstly, we have the command 'Serial.begin(9600)'. This starts serial communication,

so that the UNO can send out commands through the USB connection. The value

9600 is called the 'baud rate' of the connection. This is how fast the data is to be

sent. You can change this to a higher value, but you will also have to change the

Arduino Serial monitor to the same value. We will discuss this later; for now, leave

it at 9600.

The line beginning with 'while' ensures that there is something at the other end of

the USB connection for the Arduino to talk to before it starts sending messages.

Otherwise, the message might be sent, but not displayed. This line is actually only

necessary if you are using an Arduino Leonardo because the Arduino UNO

automatically resets the Arduino board when you open the Serial Monitor, whereas

this does not happen with the Leonardo.

The last of the new lines in 'setup' sends out the message that we see at the top of

the Serial Monitor.

The 'loop' function is where all the action happens:

void loop()

{

if (Serial.available())

{

char ch = Serial.read();

if (ch >= '0' && ch <= '7')

{

int led = ch - '0';

bitSet(leds, led);

updateShiftRegister();

Serial.print("Turned on LED ");

Serial.println(led);

}

if (ch == 'x')

{

leds = 0;

updateShiftRegister();

120 / 164

Serial.println("Cleared");

}

}

}

Everything that happens inside the loop is contained within an 'if' statement. So

unless the call to the built-in Arduino function 'Serial.available()' is 'true' then

nothing else will happen.

Serial.available() will return 'true' if data has been send to the UNO and is there

ready to be processed. Incoming messages are held in what is called a buffer and

Serial.available() returns true if that buffer is Not empty.

If a message has been received, then it is on to the next line of code:

char ch = Serial.read();

This reads the next character from the buffer, and removes it from the buffer. It also

assigns it to the variable 'ch'. The variable 'ch' is of type 'char' which stands for

'character' and as the name suggests, holds a single character.

If you have followed the instructions in the prompt at the top of the Serial Monitor,

then this character will either be a single digit number between 0 and 7 or the letter

'x'.

The 'if' statement on the next line checks to see if it is a single digit by seeing if 'ch'

is greater than or equal to the character '0' and less than or equal to the character

'7'. It looks a little strange comparing characters in this way, but is perfectly

acceptable.

Each character is represented by a unique number, called its ASCII value. This means

that when we compare characters using <= and >= it is actually the ASCII values that

were being compared.

If the test passes, then we come to the next line:

int led = ch – '0';

Now we are performing arithmetic on characters! We are subtracting the digit '0'

from whatever digit was entered. So, if you typed '0' then '0' – '0' will equal 0. If you

typed '7' then '7' – '0' will equal the number 7 because it is actually the ASCII values

that are being used in the subtraction.

Since that we know the number of the LED that we want to turn on, we just need to

set that bit in the variable 'leds' and update the shift register.

bitSet(leds, led);

updateShiftRegister();

121 / 164

The next two lines write back a confirmation message to the Serial Monitor.

Serial.print("Turned on LED ");

Serial.println(led);

The first line uses Serial.print rather than Serial.println. The different between the

two is that Serial.print does not start a new line after printing whatever is in its

parameter. We use this in the first line, because we are printing the message in two

parts. Firstly the general bit: 'Turned on LED ' and then the number of the LED.

The number of the LED is held in an 'int' variable rather than being a text string.

Serial.print can take either a text string enclosed in double-quotes, or an 'int' or for

that matter pretty much any type of variable.

After the 'if' statement that handles the case, when a single digit has been handled,

there is a second 'if' statement that checks to see if 'ch' is the letter 'x'.

if (ch == 'x')

{

leds = 0;

updateShiftRegister();

Serial.println("Cleared");

}

If it is, then it clears all the LEDs and sends a confirmation message.

122 / 164

Lesson 18 Photocell

Overview

In this lesson, you will learn how to measure light intensity using an Analog Input.

You will build on lesson 16 and use the level of light to control the number of LEDs

to be lit.

The photocell is at the bottom of the breadboard, where the pot was above.

Component Required:

(1) x Elegoo Uno R3

(1) x 830 tie-points breadboard

(8) x leds

(8) x 220 ohm resistors

(1) x 1k ohm resistor

(1) x 74hc595 IC

(1) x Photoresistor (Photocell)

(16) x M-M wires (Male to Male jumper wires)

Component Introduction

PHOTOCELL:

The photocell used is of a type called a light dependent resistor, sometimes called

an LDR. As the name suggests, these components act just like a resistor, except that

the resistance changes in response to how much light is falling on them.

This one has a resistance of about 50 kΩ in near darkness and 500 Ω in bright light.

To convert this varying value of resistance into something we can measure on an

UNO R3 board's analog input, it needs to be converted into a voltage.

The simplest way to do that is to combine it with a fixed resistor.

123 / 164

The resistor and photocell together behave like a pot. When the light is very bright,

then the resistance of the photocell is very low compared with the fixed value

resistor, and so it is as if the pot were turned to maximum.

When the photocell is in dull light, the resistance becomes greater than the fixed 1

kΩ resistor and it is as if the pot were being turned towards GND.

Load up the sketch given in the next section and try covering the photocell with your

finger, and then holding it near a light source.

124 / 164

Connection
Schematic

125 / 164

Wiring diagram

126 / 164

Code

After wiring, please open the program in the code folder- Lesson 26 Photocell and

click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

The first thing to note is that we have changed the name of the analog pin to be

'lightPin' rather than 'potPin' since we no longer have a pot connected.

The only other substantial change to the sketch is the line that calculates how many

of the LEDs to light:

int numLEDSLit = reading / 57; // all LEDs lit at 1k

This time, we divide the raw reading by 57 rather than 114. In other words, we divide

it by half as much as we did with the pot to split it into nine zones, from no LEDs lit

to all eight lit. This extra factor is to account for the fixed 1 kΩ resistor. This means

that when the photocell has a resistance of 1 kΩ (the same as the fixed resistor), the

raw reading will be 1023 / 2 = 511. This will equate to all the LEDs being lit and then

a bit (numLEDSLit) will be 8.

Example picture

127 / 164

Lesson 19 74HC595 And Segment Display

Overview

After learning Lesson 24、25 and Lesson 26, we will use the 74HC595 shift register

to control the segment display. The segment display will show number from 9-0.

Component Required:

(1) x Elegoo Uno R3

(1) x 830 tie-points breadboard

(1) x 74HC595 IC

(1) x 1 Digit 7-Segment Display

(8) x 220 ohm resistors

(26) x M-M wires (Male to Male jumper wires)

Component Introduction

Seven segment display

Below is the seven-segment pin diagram.

128 / 164

0-9 ten digits correspond with each segment are as follows (the following table

applies common cathode seven segment display device, if you are using a common

anode, the table should be replaced every 1 0 0 should all replaced by 1):

Display digital

dp

a

b

c

d

e

f

g

0

0

1

1

1

1

1

1

0

1

0

0

1

1

0

0

0

0

2

0

1

1

0

1

1

0

1

3

0

1

1

1

1

0

0

1

4

0

0

1

1

0

0

1

1

5

0

1

0

1

1

0

1

1

6

0

1

0

1

1

1

1

1

7

0

1

1

1

0

0

0

0

8

0

1

1

1

1

1

1

1

9

0

1

1

1

1

0

1

1

129 / 164

Connection
Schematic

130 / 164

Wiring diagram

131 / 164

The following table shows the seven-segment display 74HC595 pin correspondence

table:

74HC595 pin

Seven shows remarkable

control pin (stroke)

Q0 7 (A)

Q1 6 (B)

Q2 4 (C)

Q3 2 (D)

Q4 1 (E)

Q5 9 (F)

Q6 10 (G)

Q7 5 (DP)

Step one: Connect 74HC595

First, the wiring is connected to power and ground:

VCC (pin 16) and MR (pin 10) connected to 5V

GND (pin 8) and OE (pin 13) to ground

Connection DS, ST_CP and SH_CP pin:

DS (pin 14) connected to UNO R3 board pin 2 (the figure below the yellow line)

ST_CP (pin 12, latch pin) connected to UNO R3 board pin 3 (FIG blue line below)

SH_CP (pin 11, clock pin) connected to UNO R3 board pin 4 (the figure below the

white line)

Step two: Connect the seven segment display

The seven-segment display 3, 8 pin to UNO R3 board GND (This example uses the

common cathode, if you use the common anode, please connect the 3, 8 pin to

UNO R3 board + 5V)

According to the table above, connect the 74HC595 Q0 ~ Q7 to seven-segment

display corresponding pin (A ~ G and DP), and then each foot in a 220 ohm resistor

in series.

132 / 164

Code

After wiring, please open the program in the code folder- Lesson 27 74HC595 And

Segment Display and click UPLOAD to upload the program. See Lesson 2 for details

about program uploading if there are any errors.

Example picture

Lesson 20 Four Digital Seven Segment Display

Overview

In this lesson, you will learn how to use a 4-digit 7-segment display.

When using 1-digit 7-segment display, please notice that if it is common anode, the

common anode pin connects to the power source; if it is common cathode, the

common cathode pin connects to the GND.

When using 4-digit 7-segment display, the common anode or common cathode pin

is used to control which digit is displayed. Even though there is only one digit

working, the principle of Persistence of Vision enables you to see all numbers

displayed because each the scanning speed is so fast that you hardly notice the

intervals.

Component Required:

(1) x Elegoo Uno R3

(1) x 830 tie-points breadboard

(1) x 74HC595 IC

(1) x 4 Digit 7-Segment Display

(4) x 220 ohm resistors

(23) x M-M wires (Male to Male jumper wires)

133 / 164

134 / 164

Component Introduction
Four Digital Seven segment display

Connection

Schematic

135 / 164

Wiring diagram

136 / 164

137 / 164

Code

After wiring, please open the program in the code folder- Lesson 28 Four Digital Seven Segment

Display and click UPLOAD to upload the program. See Lesson 2 for details about program uploading

if there are any errors.

Example picture

Lesson 21 DC Motors

Overview

In this lesson, you will learn how to control a small DC motor using an UNO R3 and a transistor.

Component Required:

(1) x Elegoo Uno R3

(1) x 830 tie-points breadboard

(1) x L293D IC

(1) x Fan blade and 3-6v motor

(5) x M-M wires (Male to Male jumper wires)

(1) x Power Supply Module

(1) x 9V1A adapter

Component Introduction

Breadboard Power Supply

The small DC motor is likely to use more power than an UNO R3 board digital output can handle

directly. If we tried to connect the motor straight to an UNO R3 board pin, there is a good chance

that it could damage the UNO R3 board. So we use a power supply module provides power supply

138 / 164

Product Specifications:

 Locking On/Off Switch

 LED Power Indicator

 Input voltage: 6.5-9v (DC) via 5.5mm x 2.1mm plug

 Output voltage: 3.3V/5v

 Maximum output current: 700 mA

 Independent control rail output. 0v, 3.3v, 5v to breadboard

 Output header pins for convenient external use

 Size: 2.1 in x 1.4 in

 USB device connector onboard to power external device

Setting up output voltage:

The left and right voltage output can be configured independently. To select the output voltage,

move jumper to the corresponding pins. Note: power indicator LED and the breadboard power rails

will not power on if both jumpers are in the “OFF” position.

139 / 164

140 / 164

Make sure that you align the module correctly on the breadboard. The negative pin(-) on module

lines up with the blue line(-) on breadboard and that the positive pin(+) lines up with the red line(+).

Failure to do so could result in you accidently reversing the power to your project

L293D

This is a very useful chip. It can actually control two motors independently. We are just using half

the chip in this lesson, most of the pins on the right hand side of the chip are for controlling a second

motor.

Important note:

141 / 164

Product Specifications:

• Featuring Unitrode L293 and L293D Products Now From Texas Instruments

• Wide Supply-Voltage Range: 4.5 V to 36 V

• Separate Input-Logic Supply

• Internal ESD Protection

• Thermal Shutdown

• High-Noise-Immunity Inputs

• Functionally Similar to SGS L293 and SGS L293D

• Output Current 1 A Per Channel (600 mA for L293D)

• Peak Output Current 2 A Per Channel (1.2 A for L293D)

• Output Clamp Diodes for Inductive T ransient Suppression (L293D)

Description/ordering information

The L293 and L293D are quadruple high-current half-H drivers. The L293 is designed to provide

bidirectional drive currents of up to 1 A at voltages from 4.5 V to 36 V. The L293D is designed to

provide bidirectional drive currents of up to 600-mA at voltages from 4.5 V to 36 V. Both devices are

designed to drive inductive loads such as relays, solenoids, dc and bipolar stepping motors, as well

as other high-current/high-voltage loads in positive-supply applications.

All inputs are TTL compatible. Each output is a complete totem-pole drive circuit, with a Darlington

transistor sink and a pseudo-Darlington source. Drivers are enabled in pairs, with drivers 1 and 2

enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN. When an enable input is high, the associated

drivers are enabled, and their outputs are active and in phase with their inputs. When the enable

input is low, those drivers are disabled, and their outputs are off and in the high-impedance state.

With the proper data inputs, each pair of drivers forms a full-H (or bridge) reversible drive suitable

for solenoid or motor applications.

Block diagram

142 / 164

VCC1

VCC2

I got fed up with indecipherable pinout diagrams within datasheets, so have designed my own that

I think gives more pertinent information.

There are 3 wires connected to the Arduino, 2 wires connected to the motor, and 1 wire connected

to a battery.

To use this pinout:

The left hand side deals with the first motor, the right hand side deals with a second motor.

Yes, you can run it with only one motor connected.

Arduino Connections

M1 PWM - connect this to a PWM pin on the Arduino. They're labelled on the Uno, pin 5 is an

example. Output any integer between 0 and 255, where 0 will be off, 128 is half speed and 255 is

3

14

1
1 16

1
0

2 15 1
0

M

1

4 13

M 5 12

6 11

2 3
1
0

7

8

10

9

1
0

1

0

M

143 / 164

max speed.

M1 direction 0/1 and M1 direction 1/0 - Connect these two to two digital Arduino pins. Output one

pin as HIGH and the other pin as LOW, and the motor will spin in one direction.

Reverse the outputs to LOW and HIGH, and the motor will spin in the other direction.

144 / 164

Connection
Schematic

Wiring diagram

145 / 164

146 / 164

The code below does not use a separate power supply (ie a battery), it uses instead

the 5v power from the Arduino. Note that this would be risky without the L293D

controlling it.

You should _never_ connect a motor directly to the Arduino, because when you

switch a motor off you get an electrical feedback. With a small motor, this will

damage your Arduino, and with a large motor, you can watch an interesting flame

and sparks effect.

Code

After wiring, please open the program in the code folder- Lesson 29 DC Motors and

click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

After program loading, turn on all the power switches. The motor will slightly rotate

clockwise and anticlockwise for 5 times. Then, it will continue to dramatically rotate

clockwise. After a short pause, it will dramatically rotate anticlockwise. Then the

controller board will send PWM signal to drive the motor, the motor will slowly

reduce its maximum RPM to the minimum and increase to the maximum again.

Finally, it comes to a stop for 10s until the next cycle begins.

147 / 164

Example picture

Lesson 22 Relay

Overview

In this lesson, you will learn how to use a relay.

Component Required:

(1) x Elegoo Uno R3

(1) x 830 tie-points breadboard

(1) x Fan blade and 3-6v dc motor

(1) x L293D IC

(1) x 5v Relay

(1) x Power Supply Module

(1) x 9V1A Adapter

(8) x M-M wires (Male to Male jumper wires)

148 / 164

149 / 164

Component Introduction

Relay:

A relay is an electrically operated switch. Many relays use an electromagnet to

mechanically operate a switch, but other operating principles are also used as in

solid-state relays. Relays are used where it is necessary to control a circuit by a low-

power signal (with complete electrical isolation between control and controlled

circuits), or where several circuits must be controlled by one signal. The first relays

were used in long-distance telegraph circuits as amplifiers. They repeated the signal

coming in from one circuit and re-transmitted it on another circuit. Relays were used

extensively in telephone exchanges and early computers to perform logical

operations.

A type of relay that can handle the high power required to directly control an electric

motor or other loads is called a contactor. Solid-state relays control power circuits

with no moving parts, instead using a semiconductor device to perform the

switching. Relays with calibrated operating characteristics and sometimes multiple

operating coils are used to protect electrical circuits from overload or faults. In

modern electric power systems, these functions are performed by digital

instruments called "protective relays".

Below is the schematic of how to drive relay with Arduino.

You may be confused about how to insert the relay into the bread board. As the

picture below shows, you will have to bend one of the pins of the relay slightly then

you can insert it into the bread board.

150 / 164

Connection
Schematic

151 / 164

Wiring diagram

Code

After wiring, please open the program in the code folder- Lesson 30 Relay and click

UPLOAD to upload the program. See Lesson 2 for details about program uploading

if there are any errors.

After program loading, turn on all the power switches. The relay will pick up with a

ringing sound. Then, the motor will rotate. After a period of time, the relay will be

released, and the motor stops.

Example picture

152 / 164

Lesson 23 Stepper Motor

Overview

In this lesson, you will learn a fun and easy way to drive a stepper motor.

The stepper we are using comes with its own driver board making it easy to connect

to our UNO.

Component Required:

(1) x Elegoo Uno R3

(1) x 830 tie-points breadboard

(1) x ULN2003 stepper motor driver module

(1) x Stepper motor

(1) x 9V1A Adapter

(1) x Power supply module

(6) x F-M wires (Female to Male DuPont wires)

(1) x M-M wire (Male to Male jumper wire)

Component Introduction

Stepper Motor

153 / 164

154 / 164

A stepper motor is an electromechanical device which converts electrical pulses into

discrete mechanical movements. The shaft or spindle of a stepper motor rotates in

discrete step increments when electrical command pulses are applied to it in the

proper sequence. The motors rotation has several direct relationships to these

applied input pulses. The sequence of the applied pulses is directly related to the

direction of motor shafts rotation. The speed of the motor shafts rotation is directly

related to the frequency of the input pulses and the length of rotation is directly

related to the number of input pulses applied. One of the most significant

advantages of a stepper motor is its ability to be accurately controlled in an open

loop system. Open loop control means no feedback information about position is

needed. This type of control eliminates the need for expensive sensing and feedback

devices such as optical encoders. Your position is known simply by keeping track of

the input step pulses.

Stepper motor 28BYJ-48 Parameters

 Model: 28BYJ-48

 Rated voltage: 5VDC

 Number of Phase: 4

 Speed Variation Ratio: 1/64

 Stride Angle: 5.625° /64

 Frequency: 100Hz

 DC resistance: 50Ω±7%(25℃)

 Idle In-traction Frequency: > 600Hz

 Idle Out-traction Frequency: > 1000Hz

 In-traction Torque >34.3mN.m(120Hz)

 Self-positioning Torque >34.3mN.m

 Friction torque: 600-1200 gf.cm

 Pull in torque: 300 gf.cm

 Insulated resistance >10MΩ(500V)

 Insulated electricity power：600VAC/1mA/1s

 Insulation grade：A

 Rise in Temperature <40K(120Hz)

 Noise <35dB(120Hz,No load,10cm)

155 / 164

Interfacing circuits

The bipolar stepper motor usually has four wires coming out of it. Unlike unipolar

steppers, bipolar steppers have no common center connection. They have two

independent sets of coils instead. You can distinguish them from unipolar steppers

by measuring the resistance between the wires. You should find two pairs of wires

with equal resistance. If you’ve got the leads of your meter connected to two wires

that are not connected (i.e. not attached to the same coil), you should see infinite

resistance (or no continuity).

156 / 164

ULN2003 Driver Board

Product Description

o Size: 42mmx30mm

o Use ULN2003 driver chip, 500mA

o A. B. C. D LED indicating the four phase stepper motor working condition.

o White jack is the four phase stepper motor standard jack.

o Power pins are separated

o We kept the rest pins of the ULN2003 chip for your further prototyping.

The simplest way of interfacing a unipolar stepper to Arduino is to use a breakout

for ULN2003A transistor array chip. The ULN2003A contains seven Darlington

transistor drivers and is somewhat like having seven TIP120 transistors all in one

package. The ULN2003A can pass up to 500 mA per channel and has an internal

voltage drop of about 1V when on. It also contains internal clamp diodes to dissipate

voltage spikes when driving inductive loads. To control the stepper, apply voltage to

each of the coils in a specific sequence.

157 / 164

The sequence would go like this:

Here are schematics showing how to interface a unipolar stepper motor to four

controller pins using a ULN2003A, and showing how to interface using four com

158 / 164

Connection
Schematic

159 / 164

Wiring diagram

160 / 164

We are using 4 pins to control the Stepper.

Pin 8-11 are controlling the Stepper motor.

We connect the Ground from to UNO to the Stepper motor.

Code

After wiring, please open the program in the code folder- Lesson 31 Stepper Motor

and click UPLOAD to upload the program. See Lesson 2 for details about program

uploading if there are any errors.

Before you can run this, make sure that you have installed the < Stepper > library or

re-install it, if necessary. Otherwise, your code won't work.

For details about loading the library file, see Lesson 1.

Example picture

Lesson 24 Controlling Stepper Motor With Remote

Overview

In this lesson, you will learn a fun and easy way to control a stepper motor from a

distance using an IR remote control.

The stepper we are using comes with its own driver board making it easy to connect

to our UNO.

Since we don’t want to drive the motor directly from the UNO, we will be using an

inexpensive little breadboard power supply that plugs right into our breadboard and

power it with a 9V 1Amp power supply.

The IR sensor is connected to the UNO directly since it uses almost no power.

Component Required:

(1) x Elegoo Uno R3

(1) x 830 tie-points breadboard

(1) x IR receiver module

(1) x IR remote

(1) x ULN2003 stepper motor driver module

(1) x Stepper motor

(1) x Power supply module

(1) x 9V1A Adapter

(9) x F-M wires (Female to Male DuPont wires)

(1) x M-M wire (Male to Male jumper wire)

161 / 164

162 / 164

Connection
Schematic

Wiring diagram

163 / 164

164 / 164

We are using 4 pins to control the Stepper and 1 pin for the IR sensor.

Pins 8-11 are controlling the Stepper motor and pin 12 is receiving the IR

information.

We connect the 5V and Ground from the UNO to the sensor. As a precaution, use a

breadboard power supply to power the stepper motor since it can use more power

and we don’t want to damage the power supply of the UNO.

Code

After wiring, please open program in the code folder- Lesson 32 Controlling Stepper

Motor With Remote and click UPLOAD to upload the program. See Lesson 2 for

details about program uploading if there are any errors.

Before you can run this, make sure that you have installed the < IRremote >

< Stepper >library or re-install it, if necessary. Otherwise, your code won't work.

For details about loading the library file, see Lesson 1.

The code only recognize 2 values from the IR Remote control: VOL+ and VOL-.

When VOL+ is pressed on the remote the motor will make a full rotation clockwise.

VOL- will make a full rotation counter-clockwise.

Example picture

